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ABSTRACT
WiFi location systems are remarkably accurate, with decimeter-
level errors for recent CSI-based systems. However, such high accu-
racy is achieved under Line-of-Sight (LOS) conditions and with an
access point (AP) density that is much higher than that typically
found in current deployments that primarily target good coverage.
In contrast, when many of the APs within range are in Non-Line-
of-Sight (NLOS), the location accuracy degrades drastically.

In this paper we present UbiLocate, a WiFi location system that
copes well with common AP deployment densities and works ubiq-
uitously, i.e., without excessive degradation under NLOS. UbiLocate
demonstrates that meter-level median accuracy NLOS localization
is possible through (i) an innovative angle estimator based on a
Nelder-Mead search, (ii) a fine-grained time of flight ranging sys-
tem with nanosecond resolution, and (iii) the accuracy improve-
ments brought about by the increase in bandwidth and number
of antennas of IEEE 802.11ac. In combination, they provide supe-
rior resolvability of multipath components, significantly improving
location accuracy over prior work. We implement our location
system on off-the-shelf 802.11ac devices and make the implemen-
tation, CSI-extraction tool and custom Fine Timing Measurement
design publicly available to the research community. We carry out
an extensive performance analysis of our system and show that it
outperforms current state-of-the-art location systems by a factor
of 2-3, both under LOS and NLOS.
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• Networks→ Location based services.

KEYWORDS
Indoor localization, CSI, 802.11ac, AoA, ToF, Wireless Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8443-8/21/06. . . $15.00
https://doi.org/10.1145/3458864.3468850

ACM Reference Format:
Alejandro Blanco Pizarro, Joan Palacios Beltrán, Marco Cominelli, Francesco
Gringoli, and Joerg Widmer. 2021. Accurate Ubiquitous Localization with
Off-the-Shelf IEEE 802.11ac Devices. In The 19th Annual International Con-
ference on Mobile Systems, Applications, and Services (MobiSys ’21), June
24-July 2, 2021, Virtual, WI, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3458864.3468850

1 INTRODUCTION
Wireless localization and sensing have become important applica-
tions of wireless communications, and the accuracy of such systems
has improved substantially over the past two decades of research.
While the first works that pioneered this field [6, 60] had an accu-
racy on the order of several meters at best, recent designs [5, 27] pro-
vide highly accurate location estimates with errors of a few decime-
ters. For this, location systems use a range of different approaches.
With multi-antenna systems, Angle of Arrival (AoA) and/or Angle
of Departure (AoD) information from incoming/outgoing signals
can be estimated bymeans of array processing techniques. With suf-
ficiently many Access Points (APs) or anchors with known location,
target devices can then be located through triangulation [27, 31, 55].
When Time of Flight (ToF) or Time Difference of Arrival (TDOA)
information is available for ranging, classical trilateration meth-
ods are applicable [41, 56, 57]. Combining these methods further
improves accuracy, and some works even propose single-AP local-
ization using both angle and ranging information [34, 40, 47].

For sub-meter accuracy, WiFi location systems typically extract
radio signal features from the Channel State Information (CSI)
to derive accurate angle and timing information of the Line-Of-
Sight (LOS) path. While this is straightforward on software-defined
radio systems, location systems that work on off-the-shelf devices
are easier to deploy and have a much larger practical impact. The
most prominent off-the-shelf devices that provide CSI information
are the Intel 5300 cards [21] for the IEEE 802.11n standard. They are
used by virtually all CSI-based off-the-shelf systems [8, 25, 27, 54].
Despite the good location accuracy, 802.11n is already a decade old
and newer standards such as 802.11ac and 802.11ax can potentially
provide even better performance.

At the same time, the good accuracy of prior systems is only
achieved when the device to be located has unobstructed LOS to
several APs (or at the very least one AP), and performance degrades
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considerably under Non-Line-Of-Sight (NLOS) conditions. Dealing
with NLOSis extremely challenging. While angle and timing infor-
mation from obstructedLOSpaths that pass through obstacles may
still provide useful information, it is very di�cult to distinguish ob-
structedLOSpaths from trueNLOSpaths coming from re�ections.
This is an important shortcoming since typical large scale WiFi
deployments have a number ofAPs per building �oor but fewer
than oneAPper room, andNLOSconditions are very common. Sev-
eral works tackleNLOSscenarios using ultra-wideband technology
[12, 37] or software-de�ned radios for through-wall imaging and
mapping [1, 51]. However, to the best of our knowledge, there is
no general-purpose WiFi location system that provides adequate
performance under true NLOS conditions.1

In this paper we presentUbiLocate, a ubiquitous WiFi loca-
tion system that works both underLOSandNLOSconditions. We
achieve goodNLOSlocalization through the improvements brought
about by 802.11ac in terms of bandwidth and number of antennas,
in combination with novel signal processing for multipath decom-
position, that jointly help to resolve multipath e�ects much more
accurately. Our paper makes the following main contributions:
� Optimized AoA extraction. Classic algorithms such as MUSIC
[46] and ESPRIT [43] have been widely used to analyze RF signals
for path parameter estimation, especiallyAoA. [2, 31, 47]. Recently,
compressed sensing techniques have been demonstrated to provide
better accuracy [15, 33, 59]. However, their application can be com-
putationally prohibitive in common scenarios. In order to reduce
the computational complexity,UbiLocateiteratively determines a
�rst estimate of the path parameters and then re�nes it through
a Nelder-Mead search [30]. This minimization results in a more
accurate multipath decomposition, andUbiLocateachieves anAoA
accuracy improvement of a factor of 2 forLOSand 1.5 forNLOS
settings compared to state-of-the-art algorithms [27].
� Controlled Ranging. Estimating the absoluteToFand thus the
distance between client andAP requires timestamped packet ex-
changes, as standardized in the 802.11 Fine Timing Measurement
(FTM) protocol [23, 24]. However,FTMis inaccurate in multipath-
rich environments [26]. UbiLocateuses a custom protocol similar
to FTMthat has lower overhead and is more robust by decomposing
the multipath channel to accurately determine theToFof the �rst
path. Again,UbiLocateimproves theToFestimation accuracy by a
factor of 2 for LOS and and 1.5 for NLOS compared to plain FTM.
� Filtering reliable APs. Depending on the speci�c scenario, the
estimates from di�erentAPs have di�erent �delity. When averaging
the location information provided by allAPs, low quality estimates
may contaminate the overall location accuracy.UbiLocatetherefore
includes a mechanism to evaluate the quality of di�erent estimates,
giving more weight to the APs that provide good estimates.
� Implementation on o�-the-shelf devices. We implement the
UbiLocatesystem on o�-the-shelf Asus AC2900 RT86U routers that
support IEEE 802.11ac with 4x4 Multiple-Input Multiple-Output
(MIMO) and 80 MHz of bandwidth. The improved hardware capa-
bilities increase localization accuracy since the larger bandwidth
and number of antennas allow for better time and space resolution.
We can thus extract the path parameters more accurately than with

1While some systems [27, 45] claim to analyze �NLOSscenarios�, these scenarios do
in fact have LOS to one or more APs in almost all cases.

the older IEEE 802.11n standard. We modify the router �rmware to
accessCSIin order to estimateAoA, AoD, andToF. (i) UbiLocate
is the �rst location system implemented on o�-the-shelf devices
that works with 80 MHz WiFi channels and does not require a non-
disclosure agreement (the existing 80 MHz location systems [5, 40]
use Quantenna devices that require such a non-disclosure agree-
ment). (ii) It is also the �rst IEEE 802.11ac-based location system
that can simultaneously derive both angle and absolute distance to
a target device, whereas prior work uses two separate co-located
devices for this purpose [26, 40].

We deployUbiLocatein a large o�ce environment and test it
with di�erent AP densities and with bothLOSto NLOSmeasure-
ment points. Our performance evaluation shows thatUbiLocate
achieves meter-level median accuracy even for pureNLOSand
low AP density scenarios. It outperforms current state-of-the-art
systems by a factor of 2-3. Finally, we release our tool to extract
CSIand performFTM-like ranging to the research community to
foster wireless systems research with 802.11ac. We believe that it
will prove similarly useful as the widely usedCSItool for 802.11n
[21], given the hardware improvements o�ered by 802.11ac. The
CSI extractor tool with the modi�ed �rmware and documentation
are available in a github repository [3].

2 UBILOCATE OVERVIEW
UbiLocatelocates a wireless device usingAoA, AoD, andToFinfor-
mation. This is relatively straightforward when severalAPs with
direct LOSare within range. However, typical indoor WiFi deploy-
ments do not provide ubiquitousLOScoverage sinceNLOSlinks
can provide su�ciently high data rates.

In such complex environments withNLOS, the multipath chan-
nel and the resulting superposition of di�erent signals at the re-
ceiver signi�cantly a�ects the quality of the location estimate. Even
under pureNLOS, good location accuracy is feasible as long as the
location system can discriminate between obstructedLOSpaths
and theNLOSpaths coming from re�ections. The latter must be
discarded, since they lead to erroneous angle andToFestimates. By
de�nition, obstructedLOSpaths pass through an obstacle, and thus
their signal power may be severely attenuated compared to other
NLOSpaths. Accurately detecting them requires a �ne-grained
multipath decomposition of the channel.

As is common for wireless location systems, we assume that the
positions of theAPs are �xed and known. To discriminate the mul-
tipath components,UbiLocateminimizes the norm of the di�erence
between the observed received signal and estimated superimposed
signals and their path parameters. The number of possible combi-
nations of path parameters makes brute force minimization compu-
tationally prohibitive, but if an approximate estimate is known, the
minimization can be sped up signi�cantly. To this end, we �rst com-
pute rough estimates of the path parameters and then re�ne them
through a Nelder-Mead search [35]. This provides better accuracy
than the widely used MUSIC and similar approaches [27] which
resolve the paths in one round.UbiLocateiteratively estimates the
parameters of the strongest path and then subtracts them from the
received signal. This allowsUbiLocateto estimate the parameters
of weak paths that would otherwise be masked by stronger ones
and is especially critical inNLOSenvironments. In contrast to prior
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Figure 1: NLOS example with obstructed LOS path.

iterative approaches [13, 20, 48], we further re�ne the estimation
to remove imperfections which leads to improved angle accuracy
in the challenging cases we target in this paper.

Fig. 1 shows a typicalNLOSscenario in which re�ected paths
may be stronger than the obstructedLOSone. In addition, as shown
on the right in this example �gure, path?1 and path?2 are close
in time and angle, and the uncertainty around path?2 makes it
hard to discriminate the two. In such a scenario, accurate multipath
decomposition is key for good location system performance.

2.1 Path parameters
Consider aMIMO system where the transmitter and the receiver
have uniform linear arrays of! and " antennas with antenna
spacing of half a wavelength. The transmitter sends a set of OFDM
signalss»: ¼= »B0»: ¼•B1»: ¼• ”””•B! � 1»: ¼¼over  subcarriers and!
antennas. The signals propagate through a multipath channel with
%di�erent paths and arrive at the receiver, characterized by:
� Complex attenuation W? . The signal su�ers an attenuation of
W? along path?.
� Angle of arrival \ AG•?. The signal arrives at each antenna with
a phase delay determined by the antenna spacing. The phase shift
»q¹\ AG•?º¼< at the< th receive antenna as function of theAoA for
the ?th path is given by:

»q¹\ AG•?º¼< = 4� 9c¹< � 1º sin¹\ AG•?º ” (1)

The vector of phase shifts for the whole array is:

5¹\ AG•?º = »q¹\ AG•?º¼0• ”””•»q¹\ AG•?º¼" � 1 ” (2)

� Angle of departure \ CG•?. Similarly, »q¹\ CG•?º¼; is the phase
shift for the ; th transmit antenna as a function of the AoD:

»q¹\ CG•?º¼; = 4� 9c¹; � 1º sin¹\ CG•?º (3)

and we denote the vector of phase shifts for the whole array by
5¹\ CG•?º.
� Path delay g? . Each path? experiences a di�erent propagation
delay determined by its length. In the frequency domain, this delay
represents a phase shiftk ¹g?º»: ¼between adjacent subcarriers:

k ¹g?º»: ¼= 4� 92c: � 5g? • (4)

where� 5 is the spacing between consecutive subcarriers.
With the parameters above, we can express the channel as fol-

lows:

H»: ¼=
%� 1Õ

?=0

5¹\ AG•?ºW?5H ¹\ CG•?ºk ¹g?º»: ¼• (5)

where ¹�º� is the Hermitian operator. The received signal is:

y»: ¼= H»: ¼s»: ¼ ¸w»: ¼• (6)

wherew»: ¼is L-dimensional white Gaussian noise in the frequency
domain, i.e.,w»: ¼= »F 0»: ¼•F1»: ¼• ”””•F! � 1¼. For a knowns»: ¼, we
can then estimate the channel as:

Ĥ»: ¼= y»: ¼s� »: ¼= Ĥ»: ¼= H»: ¼ ¸ŵ»: ¼• (7)

where ¹�º� is the conjugate operator. Since the channel provides
spatial information about the location of the devices, it needs to be
estimated as accurately as possible.

2.2 Angle estimation
For device localization,UbiLocaterequires the angles for the direct
or obstructedLOSpath, provided such a path exists. This path is the
one that typically arrives earliest in time before any of theNLOS
paths coming from re�ections, i.e., the one with the smallestg? . Note
that theToFg? is not an absolute value but re�ects relative delay
di�erences among paths. (For ranging,UbiLocateuses a customized
FTM implementation.) While directly usingAoD information is
not useful due to potential rotation of the device to be located,
estimating it jointly with the other path parameters considerably
improves the path resolvability [54].

To extract parameters of all paths, our objective is to �nd an
expression forH»: ¼that minimizeskĤ»: ¼ � H»: ¼k. Ĥ»: ¼is the
observed channel andH»: ¼contains the contribution of each path
according to the estimated path parameters. However, minimiza-
tion by brute force is computationally prohibitive due to the large
number of combinations of path parameter. Hence, we split the
minimization into two steps. We �rst perform a greedy matching
projection to iteratively estimate the path parameters. We then
perform a minimization through Nelder-Mead search based on the
extracted path parameters from the �rst step to re�ne them.

2.2.1 Greedy estimation.Through greedy matching projection we
iteratively compute the contribution of the strongest path, estimate
its parameters, reconstruct it, and then subtract it from the overall
measured channel. The output of the subtraction is the channel
residual and using the residual we can then estimate the second
strongest path's contribution, and so on, until the parameters of all
signi�cant paths are estimated. This allows to accurately estimate
even the weak paths often found inNLOSscenarios, since we �rst
remove the contribution of the stronger ones. As is illustrated in
Fig. 1, depending on the properties of the re�ectors, paths?2 and
?3 may be signi�cantly stronger than the obstructed LOS path?1.

We apply a matching projection to the observed channel and the
path parameters that maximize it are the ones from the strongest
path? = 0. We then remove this path from the observed channel
and apply matching projection to the residual to obtain the second
strongest path? = 1, and so on. In general, in iteration? we extract
path? as the strongest path of the residual as:

¹g?• \AG•?• \CG•?º =

arg max
g? •\ AG•?•\ CG•?

Õ

:

5� ¹\ AG•?ºĤr
? »: ¼5¹\ CG•?ºk � ¹g?º»: ¼• (8)

The path parameters produce phase shifts, where5¹\ AG•?º and
5� ¹\ CG•?º are the phase shifts introduced by theAoA andAoD at
receiver and transmitter antennas, andk ¹g?º»: ¼that of the path
length for subcarrier: . We multiply these phase shifts by their con-
jugates in the projection, so that only the correct path parameters
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maximize it. The residual in iteration? is given by

Ĥr
? »: ¼= Ĥ»: ¼ �

?� 1Õ

?0=0

5¹\ AG•?0ºW?05H ¹\ CG•?0ºk ¹g?0º»: ¼• (9)

where the residual for? = 0 is the original channel̂Hr
0»: ¼= Ĥ»: ¼.

To solve the optimization problem in (8), we �rst determineg? .
To do so, we convert the channel from the frequency domain to the
time domainH»C¼, by applying an over-sampled inverse discrete
Fourier transform to the channel. In the time domain, the path delay
g? of the strongest path is directly the timeCvalue that maximizes
kH»C¼k. This channel is given by a combination ofsincfunctions
with maxima in the di�erent delays. Now, giveng? we have

H»g?¼ =
Í ?� 1

?0=0 5¹\ AG•?0ºW?05� ¹\ CG•?0º¹k H ¹g?ºk ¹g?0ºº

' 5¹\ AG•?ºW?5� ¹\ CG•?º
• (10)

andĤ»g?¼= H»g?¼¸�w»g?¼with noise at the instantg? computed as
�w»g?¼=

Í  
: =0 ŵ»: ¼k ¹g?º� »: ¼. With this, we can estimate the angle

information. Instead of jointly estimating the\ AG•?and\ CG•?, we
�rst estimate\ CG•?by a grid search assuming that\ AG•?is unknown.
This results in the following formulation:

max
\ AG•?•\ CG•?

»1•0•0• ” ” ”¼̂H»g; ¼5¹\ CG•?º” (11)

Having estimated\ CG•?, we can iteratively re�ne either angle by a
grid-search assuming that the other is known which increases the
estimation accuracy. This individual estimation of two parameters
is much faster than a joint estimation of two parameters. We re�ne
the angle estimation by maximizing the following expression:

max
\ AG•?•\ CG•?

5¹\ AG•?º� Ĥ»g; ¼5¹\ CG•?º ” (12)

Once all parameters for one path are estimated, we recompute
W? as a linear MMSE solution to minimize the error between the
measured channel and the reconstructed one.

2.2.2 Refinement search.The previous estimation of the path pa-
rameters may contain imperfections since the paths are highly cor-
related. This may leak information of the parameters from weaker
paths to stronger ones and vice versa. To re�ne the estimates, we
carry out a Nelder-Mead search to minimizekĤ»: ¼ �H»: ¼k. This
optimization method iteratively generates sets of points that com-
pose a simplex polytope. Thegradient expressionfor the re�nement
problem is very complex, whereas below we show how to obtain
anobjective functionthat is simple to evaluate. This makes Nelder-
Mead search a much better �t for the speci�c problem of multi-path
re�nement than gradient descent. While Nelder-Mead search itself
is well studied, to the best of our knowledge it has never been
applied to the problem of path parameter estimation.

We use a vectorized version of the problem̂hv = � W, with
ĥv = »v¹Ĥ»0¼ºT• ” ” ” •v¹Ĥ» � 1¼ºT¼T, »� ¼:•? = k ¹g?º 
 ¹ q � ¹\ CG•?º 

q ¹\ AG•?ºº and »W¼? = W? . This way, we havêhv as the vector con-
taining all measurement information,� as all path contributions
andWas their complex gains. Note that only� has a dependency
on the path parameters and each column depends only on one path,
while Wbehaves as a weight vector for the di�erent path contribu-
tions. Converting the formulation frommin kĤ»: ¼ �H»: ¼kto the
vectorized version of the problemmin kĥv � � Wk2 makes it easy to

Figure 2: Standard FTM (left) sends dedicated messages per
pair of nodes and UbiLocate (right) broadcasts a single frame
per node for ranging with all other nodes.

evaluate the minimization. Now let� ? be the orthonormalization
by Gram-Schmidt of� andA the invertible square matrix such that
� = � ? A to simplify the incoming equations. Then

min kĥv � � Wk2 = min kĥvk2 ¸ k AWk2 � R¹ ĥH
v � ? AWº

= min kĥvk2 � k¹ � ? ºHĥvk2 ¸ k¹ � ? ºHĥv � AWk2

= min kĥvk2 � k¹ � ? ºHĥvk2
(13)

This formula is very fast to evaluate, making it amenable to a Nelder-
Mead search over the path parameters\ AG•?• \CG•?•g? in expression
(13). Then,Wis recomputed as the linear MMSE solution using the
re�ned parameters.

The direct path?dp corresponds to the index? with the smallest
g? . To avoid spurious results, we add a power regularization term

?dp = min
?

g? � 0”0001
W?

max?0W?0
” (14)

Finally, the estimated AoA at the AP is given by

\̂ = \ AG•?3? ” (15)

2.3 Ranging
AccurateToFinformation is crucial for ranging and thus for local-
ization. Unfortunately, locating a target node with multipleAPs
leads to several problems that must be addressed to achieve good
performance. EachAP is running its own clock source, and since
the di�erent clocks are not synchronized, it is not possible to correct
ranging estimates simply by post-processing the collectedCSIdata.
Obtaining accurateToFestimates between eachAP and the client
requires multiple packet exchanges with timestamps, as in theFTM
protocol. While this protocol was standardized several years ago
[23], the majority of current WiFi devices do not support it (in-
cluding the ones we instrument for this work). At the same time,
FTMmeasurements of devices that do support it show suboptimal
performance in multipath-rich environments. We thus introduce in
our framework the �rst implementation of anFTM-like protocol
that obtains accurate ranging information on o�-the-shelf 802.11ac
devices that support CSI extraction.

In Fig. 2, we highlight the di�erences between the standardFTM
and our implementation by showing how ranging is performed with
three nodes#=•=2 f 1•2•3gwith time on the x-axis. StandardFTM
uses unicast frame-ack exchanges, whereasUbiLocatebroadcasts
frames asynchronously to all other nodes. This signi�cantly reduces
the number of frames for ranging with multiple nodes.

For theFTM frames 1-6, we indicate the destination (at trans-
mitter) and the source (at receiver) and the corresponding times.
For instance, frame 3 (� ' 3) is transmitted at time) 1 by node# 1
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(the initiator) to node# 3 (the responder) that receives it at time
) 2. Afterwards,# 3 responds by transmitting frame� ' 4 to node
# 1 at time) 3, which is received at node# 1 at time) 4. In addition
to specifying the frames carrying the timestamps,FTM de�nes
a mechanism to collect timestamps measured by the responder
at the initiator. Then,FTM uses) 1, ) 2, ) 3 and) 4 to evaluate the
Round-Trip Time (RTT) and thus the distancê3:

RTT= ¹) 4 � ) 1º � ¹ ) 3 � ) 2º

3̂ = ¹')) •2º � 2
• (16)

where2 is the speed of light. By using both transmit and receive
times it is possible to remove the reaction time uncertainty, i.e., the
delay between frames� ' 3 and� ' 4. The procedure can be repeated
multiple times to average results and obtain a more accurate esti-
mate [23]. ForFTM, # ¹# � 1º = 6 frames are required to compute
the # = 3 distances, resulting in a quadratic overhead.

Instead,UbiLocaterequires only# = 3 broadcast frames as
shown in the right part of the �gure. A frame includes the# � 1
timestamps when the last frame from each of the other nodes was
received, as well as the transmit timestamp for the frame itself.
These frames are transmitted asynchronously by each node, and
are opportunistically reused by other nodes, resulting in a linear
overhead. This also removes the need for a dedicated collection
mechanism. The three frames� ' 7-� ' 9 are used to compute the
three distances. We �rst use� ' 7 in place of� ' 3, and we call) 1 the
time when� ' 7 is transmitted by node# 1, and) 2 the time when
it is received at node# 3. We then use� ' 9 in place of� ' 4, sent
and received at) 3 and) 4, respectively. As� ' 9 embeds) 2 and) 3
(among other timestamps), upon receiving it, node# 1 can use the
same equation above to determine the distance. We can reuse� ' 7
together with � ' 8 to evaluate the distance between nodes# 1 and
# 2. Similarly, we can reuse� ' 9 with � ' 8 to estimate the distance
between# 2 and# 3.

2.4 Localization
With the information discussed previously,AP0 can estimate the
locationŷ0 of the target device in Cartesian coordinates using

ŷ0 = x0 ¸ 3̂0

�
cos\̂ 0

sin\̂ 0

�
• (17)

wherex0 is the (known) position ofAP0, 3̂0 is the estimated dis-
tance of the target device from theAP, and\̂ 0 is theAoA estimated
at the AP.

Since Eq. (17) holds for anyAP, we have a system of� such
equations, where� is the number ofAPs. However, not allAPs pro-
vide equally useful location information and a simple strategy that
averages all estimated positionŝy0 with equal weights is subopti-
mal. To identify and �lter out unreliable estimates,UbiLocateuses
a metric that measures the dominance of multipath components
with respect to the direct path in the received signal. The speci�c
metric used by our system is themean excess delay[39], given by
the weighted average of the delays of every single multipath com-
ponent with respect to the direct path, with relative path power
as the weight. More precisely, assuming that we can discriminate

%¡ 1 di�erent paths, the mean excess delayg<•0 for AP0 is:

g<•0 =

Í %� 1
?=0


W?


 2 ¹g? � g0º

Í %� 1
?=0


W?


 2 • (18)

whereW? andg? are the complex attenuation andToFof path?,
respectively, andg0 is the ToF of the �rst received path.

If the contribution of the multipath components is small com-
pared to the direct path,g<•0 will tend to 0, whereas larger values
of g<•0 indicate stronger multipath. Hence, a large mean excess
delay is an indication that the position estimatêy0 of AP0 might
be less reliable.UbiLocateuses a thresholdgC� and discards the
estimates whose mean excess delay exceedsgC�. Since this metric
largely depends on the geometry of the scenario, obstacles and
many other factors, �xing an absolute threshold for this metric
to remove unreliableAPs could lead to also removing usefulAPs.
To address this, for each measurement pointUbiLocateapplies a
dynamic threshold relative to theAP with the lowest mean excess
delay,g;F . Speci�cally,gC� is equal to two timesg;F .

We denote by� 0 the set ofAPs for which the mean excess
delayg<•0 is belowgC�. Then, givenj� 0j estimates along with their
corresponding mean excess delayg<•0 , UbiLocatecomputes the
�nal position of the target node with a weighted centroid approach:

ŷ =

Í j� 0j� 1
0=0 ŷ0 � ¹g<•0 º� 1

Í j� 0j� 1
0=0 ¹g<•0 º� 1

” (19)

This way, estimates with a small mean excess delay receive a higher
weight.UbiLocatethus discards very unreliable estimates and gives
higher importance to estimates from the most reliableAPs. Further-
more, UbiLocate addresses the following issues:

Extreme angles. Extreme angles are de�ned as angles below
-75� and above +75� . For these cases,UbiLocate's AoA estimator
may takes the opposite solution (i.e.,UbiLocateestimates -75� when
the correctAoA is +75� ), due to the fact that the relative phase dif-
ferences become close when the angles approach� 90� and the
system is a�ected by noise. To overcome this issue,UbiLocatecon-
siders both possibleAoA values and computes the two resulting
positions.UbiLocatethen chooses the one that has the minimum
distance to the position estimates from other APs.

Disagreement between position estimates . WhenUbiLocate
combines estimates from very fewAPs, a single outlier may lead to
large location errors.UbiLocatehandles the speci�c case when only
two APs are available for the localization. If the distance between
location estimates is high, this indicates that the estimate of one
of the AP is an outlier and thus combining the two estimates may
degrade the location accuracy.UbiLocatethen takes theAPwith the
lowestToFestimate for the localization when the distance between
the two position estimates exceeds 4 m.

3 IMPLEMENTATION
We buildUbiLocateon the Nexmon project that provides a �rst step
towardsCSIextraction from several chipsets developed by Broad-
com [17]. We largely improve over this prior work to consistently
extractaccurate and reliableCSI, implement features that makeCSI
extraction more �exible, and add support for timestamping both
received and transmitted frames with very high accuracy.
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