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Abstract

Motivated by low energy consumption in geographic routing in wireless networks, there has been recent interest
in determining bounds on the length of edges in the Delaunay graph of randomly distributed points. Asymptotic
results are known for random networks in planar domains. In this paper, we obtain upper and lower bounds that
hold with parametric probability in any dimension, for points distributed uniformly at random in domains with
and without boundary. The results obtained are asymptotically tight for all relevant values of such probability and
constant number of dimensions, and show that the overhead produced by boundary nodes in the plane holds also
for higher dimensions. To our knowledge, this is the first comprehensive study on the lengths of long edges in
Delaunay graphs.
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1. Introduction

We study the length of a longest Delaunay edge for points randomly distributed in multidimensional Euclidean
spaces. In particular, we consider the Delaunay graph for a set of n points distributed uniformly at random in a
d-dimensional body of unit volume. It is known that the probability that uniformly distributed random points are
not in general position1 is negligible and therefore it is safe to focus on generic sets of points [3], which we do
throughout the paper.

The motivation to study such settings comes from the Random Geometric Graph (RGG) model in whichn nodes
are distributed uniformly at random in a disk or, more generally, according to some specified density function on
d-dimensional Euclidean space [4]. The problem has attracted recent interest because of its applications in energy-
efficient geometric routing and flooding in wireless sensor networks (see, e.g., [5, 6, 7, 8]).

Related Work.For n random points uniformly chosen from the unit disk, Kozma, Lotker, Sharir, and Stupp [6]
show that the asymptotic length of a longest Delaunay edge depends on the distances of the endpoints from
the disk boundary. More specifically, letσ be the sum of these two distances; their bounds areO( 3

√
(logn)/n)

if σ ≤ ((logn)/n)2/3, O(
√

(logn)/n) if σ ≥
√

(logn)/n, and O((logn)/(nσ)) otherwise. Kozma et al. also
show, in the same setting, that the expected sum of the squares of all Delaunay edge lengths isO(1). In [9] the
authors consider the Delaunay triangulation of an infinite random (Poisson) point set ind dimensional space.
In particular, they study different properties of the subset of those Delaunay edges completely included in a cube
[0, n1/d]×· · ·×[0, n1/d]. For the maximum length of a Delaunay edge in this setting, they observe that in expectation
is inΘ(log1/d n).

The lengths of longest edges in geometric graphs induced by random point sets has also been studied for graphs
related to the Delaunay graph, including Gabriel graphs [10] and relative neighborhood (RNG) graphs [11, 12]. In
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w.p. ≥ 1− ε w.p. ≥ ε

Surface of spherical cap whose orthodromic diameter
is a Delaunay edge, when points are sampled from
the surface of ad-sphere.

O
(

log(n/ε)
n

)
Ω

(
log(1/ε)

n+log(1/ε)

)

Volume of ball cap whose base diameter is a Delaunay
edge, when points are sampled from ad-ball.

O
(

log(n/ε)
n

)
Ω

(
log(1/ε)

n+log(1/ε)

)

Table 1: Summary of results in asymptotic notation for constantd.

particular, Wan and Yi [10] show that forn points uniformly distributed in a unit-area disk, the ratioof the length
of a longest Gabriel edge to

√
(ln n)/(πn) is asymptotically almost surely equal to 2, and the expected number

of “long” Gabriel edges, of length at least 2
√

(ln n+ ξ)/(πn), is asymptotically almost surely equal to 2e−ξ, for
any fixedξ. In [13], while studying the maximum degree of Gabriel and Yao graphs, the authors observe that
the probability that the maximum edge length is greater than3

√
(logn)/n tends to zero, a bound that they claim

becomesO(((logn)/n)1/d) for d dimensions. An overview of related problems can be found in [14].
Interest in bounding the length of a longest Delaunay edge intwo-dimensional spaces has grown out of extensive

algorithmic work [15, 16, 17] aimed at reducing the energy consumption of geographically routing messages in
Radio Networks. Multidimensional Delaunay graphs are wellstudied in computational geometry from the point of
view of efficient algorithms to construct them (see [3] and references therein), but only limited results are known
regarding probabilistic analysis of Delaunay graphs in higher dimensions [18].

Overview of Our Results..We study the probabilistic length of longest Delaunay edgesfor points distributed
uniformly in geometric domains in two and more dimensions. Since the length of the longest Delaunay edge is
strongly influenced by the boundary of the enclosing region,we study the problem for two cases, which we call
with boundaryandwithout boundary.

Our results include upper and lower bounds ford-dimensional bodies with and without boundaries, that holdfor
a parametric error probabilityε and are computed up to the constant factors (they are tight only asymptotically). In
comparison, the upper bounds presented in [6] are only asymptotic, are restricted to two dimensions (d = 2), and
apply to domains with boundary (disks), although results without boundary are implicitly given, since the results
are parametric in the distance to the boundary.

All our bounds apply for anyd > 1. The asymptotic results, shown in Table 2, are tight fore−cn ≤ ε ≤ n−c, for
any constantc > 0, andd ∈ O(1). As it can be seen in Table 1 where the results are denoted asymptotically for
readability. To the best of our knowledge, this is the first comprehensive study of this problem.

The precise results obtained are detailed in Table 2. (Referto Section 2 for necessary notation.) In order to
compare upper and lower bounds for bodies with boundary, it is crucial to notice that we bound the volume of a
circular segment (2D) and the volume of a ball cap (3D), whichcan be approximated by polynomials of third and
fourth degree, respectively, on the diameter of the base. Upper bounds are proved exploiting the fact that, thanks
to the uniform density, it is very unlikely that a “large” volume is void of points. Lower bounds, on the other hand,
are proved by showing that a configuration that yields a Delaunay edge of a certain length is not very unlikely.

In the following section, some necessary notation is introduced. Upper and lower bounds for enclosing bodies
without boundaries are shown in Section 3, and the case with boundaries is covered in Section 4.

2. Preliminaries

The following notation will be used throughout. We will restrict attention to Euclidean (L2) spaces. Ad-sphere,
S = Sr,c, of radiusr is the set of all points in a (d+ 1)-dimensional space that are located at distancer (theradius)
from a given pointc (thecenter). A d-ball, B = Br,c, of radiusr is the set of all points in ad-dimensional space
that are located at distanceat most r(theradius) from a given pointc (thecenter). Theareaof a d-sphereS (in
(d + 1)-space) is itsd-dimensional volume. Thevolumeof a d-ball B (in d-space) is itsd-dimensional volume.
We refer to aunit sphereas a sphere of area 1 and aunit ball as a ball of volume 1. (This is in contrast with
the definition of a “unit” ball/sphere as a unit-radius ball/sphere. In particular, notice that in our definition the
unit sphere isnot the boundary of a unit ball. We find it convenient to standardize the volume/area to be 1 in all
dimensions.)

Let P be a set of points on ad-sphere,S. Given two pointsa, b ∈ P, let âb be the arc of a great circle between
them. Letδ(a, b) be the length of the arĉab, which is also known as theorthodromic distancebetweena andb on
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d
Upper Bound:
w.p.≥ 1− ε, ∄ âb ∈ D(P)

Lower Bound:
w.p. ≥ ε, ∃ âb∈ D(P)

Without
boundary

d Ad(δ(a, b)) ≥
ln

(
(n

2)(n−2
d−1)

/
ε

)

n−d−1 Ad(δ(a, b)) ≥ ln((e−1)/(e2ε))
n−2+ln((e−1)/(e2ε))

1 δ(a, b) ≥
ln

(
(n

2)
/
ε

)

n−2 δ(a, b) ≥ ln((e−1)/(e2ε))
n−2+ln((e−1)/(e2ε))

2 δ(a, b) ≥
cos−1

(
1− 2 ln((n

2)(n−2)/ε)
n−3

)

√
π

δ(a, b) ≥
cos−1

(
1−

2 ln((e−1)/(e2ε))
n−2+ln((e−1)/(e2ε))

)

√
π

With
boundary

d Vd(d(a, b)) ≥
ln

(
(n

2)(n−2
d−1)

/
ε

)

n−d−1

d(a, b) ≥ ρ1/
√

d− 1 :

Vd(ρ1) = ln(α(d)/ε)
κ2(d)(n−2+ln(α(d)/ε))

2 d(a, b) ≥
3

√
16√
π

ln
(
(n

2)(n−2)
/
ε

)

n−3 d(a, b) ≥ 3

√
4

7
√
π

ln(α2/ε)
n−2+ln(α2/ε)

3 d(a, b) ≥
4

√
96
π3/2

ln
(
(n

2)(n−2
2 )

/
ε

)

n−4 d(a, b) ≥ 4

√
64 3√6
83π4/3

ln(α3/ε)
n−2+ln(α3/ε)

Table 2: Summary of results.α2, α3 are constants.α(d) andκ2(d) are functions ofd.

the sphereS. Let theorthodromic diameterof a subsetX ⊆ S be the greatest orthodromic distance between a pair
of points inX. A spherical cap on Sis the set of all points at orthodromic distance at mostr from some center
point c ∈ S. Let Ad(x) be the area (d-volume) of a spherical cap of orthodromic diameterx, on ad-sphere of
surface area 1. Aball cap of Bis the intersection of ad-ball B with a closed halfspace, bounded by a hyperplane
h, in d-space; thebaseof a ball cap is the (d− 1)-ball that is the intersection ofh with the ballB. Let Vd(x) be the
d-volume of a ball cap of base diameterx, of a d-ball of volume 1. For any pair of pointsa, b, let d(a, b) be the

Euclidean distance betweena andb, i.e. d(a, b) = ||−→ab||2. Let D(P) be the Delaunay graph of a set of pointsP.
The following definitions of a Delaunay graph,D(P), of a finite setP of points in ad-dimensional body follow

the standard definitions of Delaunay graphs (see, e.g., Theorem 9.6 in [3]).

Definition 1. Let P be a generic set of points on a d-sphere S .

(i) A set F⊆ P of d+1 points define the vertices of aDelaunay faceof D(P) if and only if there is a d-dimensional
spherical cap C⊂ S such that F is contained in the boundary,∂C, of C and no points of P lie in the interior
of C (relative to the sphere S ).

(ii) Two points a, b ∈ P form aDelaunay edge, an arc of D(P), if and only if there is a d-dimensional spherical
cap C such that a, b ∈ ∂C and no points of P lie in the interior of C (relative to the sphere S ).

Definition 2. Let P be a generic set of points in a d-ball B.

(i) A set F⊆ P of d+ 1 points define the vertices of aDelaunay faceof D(P) if and only if there is a d-ball B′

such that F is contained in the boundary,∂B′, of B′ and no points of P lie in the interior of B′.

(ii) Two points a, b ∈ P form aDelaunay edge, an arc of D(P), if and only if there is a d-ball B′ such that
a, b ∈ ∂B′ and no points of P lie in the interior of B′.

The following inequalities [19] are used throughout

e−x/(1−x) ≤ 1− x ≤ e−x, for 0 < x < 1. (1)

3. Enclosing Body without Boundary

The following theorems show upper and lower bounds on the length of arcs in the Delaunay graph on ad-sphere.
3



3.1. Upper Bound

Theorem 1. Consider the Delaunay graph D(P) of a set P of n points in dimension d≥ 1, where n≥ d + 2,
distributed uniformly and independently at random in a unitd-sphere, S . Then, for0 < ε < 1, the probability is
at least1− ε that there is no arĉab∈ D(P), a, b ∈ P, such that

Ad(δ(a, b)) ≥
ln

((
n
2

)(
n−2
d−1

)/
ε
)

n− d − 1
. (∗)

Proof. Let Eε be the event that “there exists an arcâb ∈ D(P), a, b ∈ P, with inequality (∗) satisfied.” Our goal is
to prove thatP(Eε) ≤ ε.

Let us consider a fixed pair of points,a, b ∈ P. We letEa,b be the event that̂ab ∈ D(P). For any subsetQ ⊂ P
of d + 1 points containinga andb, let CQ denote the spherical cap throughQ and letFQ denote the event that the
interior ofCQ contains no points ofP (i.e., int(CQ) ∩ P = ∅).

Thus, we can writeEa,b =
⋃

Q FQ as the union, over all
(

n−2
(d+1)−2

)
=

(
n−2
d−1

)
subsetsQ ⊂ P with |Q| = d + 1 and

a, b ∈ Q, of the eventsFQ. Then, by the union bound, we know thatP(Ea,b) ≤
∑

Q P(FQ). Further, in order for
eventFQ to occur, all points ofP exceptthed + 1 points ofQ must lieoutsidethe spherical capCQ throughQ;
thus,P(FQ) = (1− µd(CQ))n−(d+1), whereµd(CQ) denotes thed-volume ofCQ.

We see thatP(FQ) ≤ (1− Ad(δ(a, b)))n−(d+1), since, for any subsetQ ⊃ {a, b}, thed-volumeµd(CQ) is at least
as large as thed-volume,Ad(δ(a, b)), of the spherical cap having orthodromic diameterδ(a, b). In other words,
Ad(δ(a, b)) is thed-volume of the smallest volume spherical cap whose boundarypasses througha andb. This
property can be seen by noticing that, fixing a spherical cap,the largest arc is an orthodromic diameter. Hence,
fixing the arcâb, the smallest spherical cap whose boundary passes througha andb has orthodromic diameter
δ(a, b).

Altogether, we get

P(Ea,b) ≤
∑

Q

P(FQ) =
∑

Q

(1− µd(CQ))n−(d+1)

≤
(
n− 2
d− 1

)
(1− Ad(δ(a, b)))n−(d+1).

Now, the event of interest is

Eε =
⋃

a,b∈P:(∗) holds

Ea,b.

The inequality (∗) is equivalent to

(n− d− 1)Ad(δ(a, b)) ≥ ln

((
n
2

)(
n− 2
d − 1

)/
ε

)
,

which is equivalent to
(
e−Ad(δ(a,b))

)(n−d−1)
≤ ε(

n
2

)(
n−2
d−1

) .

Since, by Inequality (1),e−x ≥ 1− x, the above inequality implies that

(1− Ad(δ(a, b)))(n−d−1) ≤ ε(
n
2

)(
n−2
d−1

) ,

which implies that (
n
2

)(
n− 2
d − 1

)
(1− Ad(δ(a, b)))(n−d−1) ≤ ε.

Using the union bound, we get

P(Eε) = P


⋃

a,b∈P:(∗) holds

Ea,b

 ≤
∑

a,b∈P:(∗) holds

P(Ea,b).
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Since each termP(Ea,b) in the above summation is bounded above by
(
n−2
d−1

)
(1− Ad(δ(a, b)))n−(d+1), and there are at

most
(
n
2

)
terms in the summation, we get

P(Eε) ≤
∑

a,b∈P:(∗) holds

P(Ea,b)

≤
(
n
2

)(
n− 2
d − 1

)
(1− Ad(δ(a, b)))(n−d−1) ≤ ε.

The following corollaries ford = 1 andd = 2 can be obtained from Theorem 1 using the corresponding surface
areas.

Corollary 1. In the Delaunay graph D(P) of a set P of n> 2 points distributed uniformly and independently at
random on a unit circle (1-sphere), with probability at least1 − ε, for 0 < ε < 1, there is no arcâb ∈ D(P),
a, b ∈ P, such that

δ(a, b) ≥
ln

((
n
2

)/
ε
)

n− 2
.

Corollary 2. In the Delaunay graph D(P) of a set P of n> 3 points distributed uniformly and independently at
random on a unit sphere (2-sphere), with probability at least1 − ε, for 0 < ε < 1, there is no arcâb ∈ D(P),
a, b ∈ P, such that

δ(a, b) ≥ 1
√
π

cos−1

1−
2 ln

((
n
2

)
(n− 2)

/
ε
)

n− 3

 .

Proof. The radius of a unit 2-sphere isR = 1/(2
√
π). Thus, the surface area of a spherical cap of a 2-sphere is

2πRh =
√
πh, whereh is the height of the cap. On the other hand, the central angle of a cap with orthodromic

diameterρ is 2πρ/
√
π = 2

√
πρ. Thus, the height ish = 1/(2

√
π)(1− cos(

√
πρ)). This yields that the surface area

of a spherical cap of a 2-sphere whose orthodromic diameter is ρ is (1− cos(
√
πρ))/2. Replacing in Theorem 1,

the claim follows.

3.2. Lower Bound

Theorem 2. Consider the Delaunay graph D(P) of a set P of n> 2 points distributed uniformly and independently
at random in a unit d-sphere, S . Then, for any0 < ε < 1 andρ such that

Ad(ρ) =
ln

(
(e− 1)/(e2ε)

)

n− 2+ ln
(
(e− 1)/(e2ε)

) , and

Ad(2ρ) ≤ 1− 1/(n− 1),

the probability is at leastε that there is an arĉab∈ D(P), a, b ∈ P, such that Ad(δ(a, b)) ≥ Ad(ρ).

Proof. To see that the claim is not vacuously true, fixd and letAd(2ρ) = f (d)Ad(ρ), for some functionf (·). Then,
we want to show thatAd(2ρ) = f (d) ln((e−1)/(e2ε))/(n−2+ ln((e−1)/(e2ε))) ≤ 1−1/(n−1) for some 0< ε < 1.
This is true forε ≥ (e− 1)/(e2 exp

(
(n− 2)2/(1+ (n− 1)( f (d) − 1))

)
.

In order to prove the claim, we consider a configuration givenby a specific pair of points and a specific empty
spherical cap circumscribing them, that would yield a Delaunay arc between those points. Then, we relate the
probability of existence of such a configuration to the distance between the points. Finally, we relate this quantity
to the desired parametric probability. The details follow.

For any pair of pointsa, b ∈ P, by Definition 1, for the arĉab to be inD(P), there must exist ad-dimensional
spherical capC such thata andb are located on the boundary of the cap base, and the cap surface ofC is void of
points fromP. We compute the probability of such an event as follows.

Let ρ′ > ρ be such thatAd(2ρ′) − Ad(2ρ) = 1/(n− 1). Such a valueρ′ exists becauseAd(2ρ) ≤ 1− 1/(n− 1).
Consider any pointa ∈ P. The probability,p1, that some other pointb is located so thatρ < δ(a, b) ≤ ρ′ can
be computed by considering the spherical annulus centered at a with ρ (resp.,ρ′) equal to the minimum (resp.,
maximum) orthodromic distance toa (i.e., we consider the difference between a spherical cap of orthodromic
diameter 2ρ′ and a spherical cap of orthodromic diameter 2ρ). Then,p1 = 1 − (1− 1/(n− 1))n−1 ≥ 1 − 1/e, by
Inequality (1).
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The spherical cap with orthodromic diameterδ(a, b) is empty with probability(1− Ad(δ(a, b)))n−2. To lower
bound this probability we consider separately the spherical cap with orthodromic diameterρ and the remaining
annulus of the spherical cap with orthodromic diameterδ(a, b). The probability that the annulus is empty, call itp2,
is lower bounded by upper bounding the areaAd(δ(a, b))−Ad(ρ)≤ Ad(ρ′) − Ad(ρ) ≤ Ad(2ρ′)−Ad(2ρ) = 1/(n− 1).
Then,p2 ≥ (1− 1/(n− 1))n−2 ≥ 1/e, by Inequality (1).

Finally, the probability that the spherical cap with orthodromic diameterρ is empty, call itp3, is, by Inequal-
ity (1),

p3 = (1− Ad(ρ))n−2 ≥ exp

(
−Ad(ρ)(n− 2)

1− Ad(ρ)

)

= exp

(
− ln

(
e− 1
e2ε

))
=

e2ε

e− 1
.

Therefore,

Pr
(
âb∈ D(P)

)
≥ p1p2p3 ≥

(
1− 1

e

)
1
e

e2ε

e− 1
= ε.

The following corollaries ford = 1 andd = 2 can be obtained from Theorem 2 using the corresponding surface
areas.

Corollary 3. In the Delaunay graph D(P) of a set P of n> 2 points distributed uniformly and independently at
random on a unit circle (1-sphere), with probability at leastε, for any(e− 1)/ exp(n+ 4/n) ≤ ε < 1, there is an
arc âb∈ D(P), a, b ∈ P, such that

δ(a, b) ≥
ln

(
(e− 1)/(e2ε)

)

n− 2+ ln
(
(e− 1)/(e2ε)

) .

Proof. The lower bound onδ(a, b) can be obtained by replacing in Theorem 2 the surface of the spherical cap,
which ford = 1 is the length of the arc. Regarding the lower bound onε, in the proof of Theorem 2, it was shown
that the conditions of the theorem can be met by imposing a lower bound onε that depends ond. Usingd = 1, we
obtain thatf (d) = 2 andε ≥ (e− 1)/(e2 exp

(
(n− 2)2/(1+ (n− 1)( f (d) − 1))

)
= (e− 1)/ exp(n+ 4/n).

Corollary 4. In the Delaunay graph D(P) of a set P of n> 2 points distributed uniformly and independently
at random in a unit sphere (2-sphere), with probability at leastε, for any e−n+2

√
n−1−1 ≤ ε < 1, there is an arc

âb∈ D(P), a, b ∈ P, such that

δ(a, b) ≥ 1
√
π

cos−1

1−
2 ln

(
(e− 1)/(e2ε)

)

n− 2+ ln
(
(e− 1)/(e2ε)

)
 .

Proof. As shown in the proof of Corollary 2, the surface area of a spherical cap of a 2-sphere whose orthodromic
diameter isρ is (1− cos(

√
πρ))/2. Replacing in Theorem 2, the claim follows.

4. Enclosing Body with Boundary

The following theorems show upper and lower bounds on the lengths of edges in the Delaunay graph in ad-ball.
(Recall that we refer to a unit ball as a ball of volume 1.)

4.1. Upper Bound

Theorem 3. Consider the Delaunay graph D(P) of a set P of n> d + 1 ≥ 2 points distributed uniformly and
independently at random in a unit d-ball, B. Then, for0 < ε < 1, the probability is at least1− ε that there is no
edge(a, b) ∈ D(P), a, b ∈ P, such that

Vd(d(a, b)) ≥
ln

((
n
2

)(
n−2
d−1

)/
ε
)

n− d − 1
. (∗∗)
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Proof. In order to prove this claim, we consider any one set ofd+1 points inP. Then, we relate the probability that
the ball circumscribing the set is empty, to the distance separating the points. Finally, we combine the probabilities
for all possible pairs of points and sets and we relate this quantity to the desired parametric probability. The details
follow.

Let Eε be the event that “there exists an edge (ab) ∈ D(P), a, b ∈ P, with inequality (∗∗) satisfied” Our goal is
to prove thatP(Eε) ≤ ε.

Let us consider a fixed pair of points,a, b ∈ P. We letEa,b be the event that (ab) ∈ D(P). For any subsetQ ⊂ P
of d+ 1 points containinga andb, let BQ denote the ball throughQ and letFQ denote the event that the interior of
BQ contains no points ofP (i.e., int(BQ) ∩ P = ∅).

Thus, we can writeEa,b =
⋃

Q FQ as the union, over all
(

n−2
(d+1)−2

)
=

(
n−2
d−1

)
subsetsQ ⊂ P with |Q| = d + 1 and

a, b ∈ Q, of the eventsFQ. Then, by the union bound, we know thatP(Ea,b) ≤ ∑
Q P(FQ). Further, in order

for eventFQ to occur, all points ofP exceptthed + 1 points ofQ must lieoutsidethe ballBQ throughQ; thus,
P(FQ) = (1− µd(BQ ∩ B))n−(d+1), whereµd(BQ ∩ B) denotes thed-volume ofBQ ∩ B. (Recall that points lie only
insideB.)

We see thatP(FQ) ≤ (1 − Vd(d(a, b)))n−(d+1), since, for any subsetQ ⊃ {a, b}, the d-volumeµd(BQ ∩ B) is
at least as large as thed-volume,Vd(d(a, b)), of the ball cap ofB having base diameterd(a, b). In other words,
Vd(d(a, b)) is thed-volume of the smallest volume ball cap ofB whose base boundary passes througha andb.
This property can be seen by noticing that, fixing a ball cap, the largest segment in the base is a diameter. Hence,
fixing a segment (a, b), the smallest ball cap whose boundary passes througha andb has base diameterd(a, b).

Altogether, we get

P(Ea,b) ≤
∑

Q

P(FQ) =
∑

Q

(1− µd(BQ ∩ B))n−(d+1)

≤
(
n− 2
d − 1

)
(1− Vd(d(a, b)))n−(d+1).

Now, the event of interest is
Eε =

⋃

a,b∈P:(∗∗) holds

Ea,b.

The inequality (∗∗) is equivalent to

(n− d− 1)Vd(d(a, b)) ≥ ln

((
n
2

)(
n− 2
d− 1

)/
ε

)
,

which is equivalent to (
e−Vd(d(a,b))

)(n−d−1)
≤ ε(

n
2

)(
n−2
d−1

) .

Since, by Inequality (1),e−x ≥ 1− x, the above inequality implies that

(1− Vd(d(a, b)))(n−d−1) ≤ ε(
n
2

)(
n−2
d−1

) ,

which implies that (
n
2

)(
n− 2
d− 1

)
(1− Vd(d(a, b)))(n−d−1) ≤ ε.

Using the union bound, we get

P(Eε) = P


⋃

a,b∈P:(∗∗) holds

Ea,b

 ≤
∑

a,b∈P:(∗∗) holds

P(Ea,b).

Since each termP(Ea,b) in the above summation is bounded above by
(
n−2
d−1

)
(1−Vd(d(a, b)))n−(d+1), and there are at

most
(
n
2

)
terms in the summation, we get

P(Eε) ≤
∑

a,b∈P:(∗∗) holds

P(Ea,b)

≤
(
n
2

)(
n− 2
d− 1

)
(1− Vd(d(a, b)))(n−d−1) ≤ ε.
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The following corollaries ford = 2 andd = 3 can be obtained from Theorem 3 using the corresponding
volumes.

Corollary 5. In the Delaunay graph D(P) of a set P of n> 3 points distributed uniformly and independently at
random in a unit disk (2-ball), with probability at least1 − ε, for

(
n
2

)
(n− 2)e−

√
2(n−3)/π < ε < 1, there is no edge

(a, b) ∈ D(P), a, b ∈ P, such that

d(a, b) ≥
3

√√
16
√
π

ln
((

n
2

)
(n− 2)

/
ε
)

n− 3
.

Proof. Consider the intersection of the radius of the unit disk perpendicular to (a, b) with the circumference of the
unit disk, call this pointx. The area of the triangle△abx is a strict lower bound onV2(d(a, b)). From Theorem 3,
we have the condition

V2(d(a, b)) ≥
ln

((
n
2

)
(n− 2)

/
ε
)

n− 3
.

Thus, it is enough to show that

d(a, b)
2


1
√
π
−

√
1
π
− d(a, b)2

4

 ≥
ln

((
n
2

)
(n− 2)

/
ε
)

n− 3
.

Makingρ = d(a, b)
√
π/2, we want

√
ρ2 − ρ4 ≤ ρ − π

ln
((

n
2

)
(n− 2)

/
ε
)

n− 3
. (2)

If d(a, b) < 2
√
π ln

((
n
2

)
(n− 2)

/
ε
) /

(n− 3), there is nothing to prove because

2
√
π ln

((
n
2

)
(n− 2)

/
ε
)

n− 3
<

3

√√
16 ln

((
n
2

)
(n− 2)

/
ε
)

√
π(n− 3)

,

for anyε >
(
n
2

)
(n− 2) exp

(
−
√

2(n− 3)/π
)
. Otherwise, we have thatρ ≥ π ln

((
n
2

)
(n− 2)

/
ε
) /

(n− 3), and by squar-
ing both sides of (2) we get

ρ4 ≥ 2ρπ
ln

((
n
2

)
(n− 2)

/
ε
)

n− 3
−

π
ln

((
n
2

)
(n− 2)

/
ε
)

n− 3



2

,

which is implied by

ρ3 ≥ 2π
ln

((
n
2

)
(n− 2)

/
ε
)

n− 3
.

Substitutingρ = d(a, b)
√
π/2 into the above inequality, the claim follows.

Corollary 6. In the Delaunay graph D(P) of a set P of n> 4 points distributed uniformly and independently at

random in a unit ball (3-ball), with probability at least1 − ε, for
(
n
2

)(
n−2

2

)
e−2(n−4)

/
(3
√
π) < ε < 1, there is no edge

(a, b) ∈ D(P), a, b ∈ P, such that

d(a, b) ≥
4

√
96
π3/2

ln
((

n
2

)(
n−2

2

)/
ε
)

n− 4
.

Proof. Consider the intersection of the radius of the unit ball perpendicular to (a, b) with the surface of the unit
ball, call this pointd. The volume of the cone whose base is the disk whose diameter is (a, b) and its vertex isd is
a strict lower bound onV2(d(a, b)). From Theorem 3, we have the condition

V3(d(a, b)) ≥
ln

((
n
2

)(
n−2

2

)/
ε
)

n− 4
.
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Thus, it is enough to show that

π

3

(
d(a, b)

2

)2 
1
√
π
−

√
1
π
− d(a, b)2

4

 ≥
ln

((
n
2

)(
n−2

2

)/
ε
)

n− 4
.

Makingρ = d(a, b)
√
π/2, we want

√
ρ4 − ρ6 ≤ ρ2 − 3

√
π

ln
((

n
2

)(
n−2

2

)/
ε
)

n− 4
. (3)

If d(a, b) <
√

12 ln
((

n
2

)(
n−2

2

)/
ε
) /

(
√
π(n− 4)), there is nothing to prove because

√√
12 ln

((
n
2

)(
n−2

2

)/
ε
)

√
π(n− 4)

<
4

√
96
π3/2

ln
((

n
2

)(
n−2

2

)/
ε
)

n− 4
,

for any ε >
(
n
2

)(
n−2

2

)
exp

(
−2(n− 4)

/
(3
√
π)

)
. Otherwise, we have thatρ2 ≥ 3

√
π ln

((
n
2

)(
n−2

2

)/
ε
) /

(n − 4), and by
squaring both sides of (3) we get

ρ6 ≥ 6ρ2√π
ln

((
n
2

)(
n−2

2

)/
ε
)

n− 4
−

3
√
π

ln
((

n
2

)(
n−2

2

)/
ε
)

n− 4



2

,

which is implied by

ρ4 ≥ 6
√
π

ln
((

n
2

)(
n−2

2

)/
ε
)

n− 4
.

Substitutingρ = d(a, b)
√
π/2 into the above inequality, the claim follows.

4.2. Lower Bound

As in the case without boundary, we prove our lower bound by showing a configuration given by a specific pair
of points and a specific empty body circumscribing them, thatwould yield a Delaunay edge between those points.
Then, we relate the probability of existence of such configuration to the distance between the points and to the
desired parametric probability.

Theorem 4. For any d> 1, let

α(d) =
(
1− e−κ1(d)/κ2(d)

) (
1− e−κ1(d)/(2κ2(d)(2d−2))

)

κ1(d) =
1

d− 1

d−2∑

i=0


(

d
√

d2 − 1

)i

−
√

d2 − 1
d



κ2(d) =

1+
(
2d− 1
d− 1

)d−1 d
d− 1

 .

For any n> 1 and0 < ε ≤ α(d)/e, given the Delaunay graph D(P) of a set P of n points distributed uniformly
and independently at random in a unit d-ball, with probability at leastε, there is an edge(a, b) ∈ D(P), a, b ∈ P,
such that d(a, b) ≥ ρ1/

√
d − 1, where

Vd(ρ1) =
ln (α(d)/ε)

κ2(d) (n− 2+ ln (α(d)/ε))
.

Proof. We illustrate the proof in Figures 1 and 2. Throughout the proof, we refer to a body and its set of space
points with the same name indistinctly. LetV(X) be the volume of a body (or a set of space points)X. Let the unit
ball where points are sampled be calledB. Consider two ball caps ofB, concentric on a lineℓ, calledS1 andS2,
with basesB1 andB2 of diametersρ1 andρ2, and heightsh1 andh2 respectively (see Figure 1(a)). InsideS2 \ S1,
consider the followingd-dimensional bodies of heighth2 − h1: a cylinderC with baseB1; a coneK of baseB2;
and a frustumF of basesB2 andB1 (see Figure 1(b)).

9



B

ℓS1

S2 \ S1

ρ1

ρ2

h1
h2

(a) Projection ofB, S1, andS2 in two dimensions.

F

K

C

(b) Projection ofF, K, andC in two dimensions.

a

b

ρ1/
√

d− 1

(c) Points inF \ K ∪ C for d = 3 projected in two
dimensions.

Figure 1: Illustration of Theorem 4.
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Consider the bodyF \ (C ∪ K) evenly partitioned into 2(d − 1) pieces such that two of them, call themBa and
Bb, have the following property. For any pair of pointsa ∈ Ba andb ∈ Bb, the pointsa andb are separated by a
distance of at leastρ1/

√
d− 1. To see why such a partition exists, consider a (d− 1)-dimensional cube, call itC1,

inscribed in the base ofS1. The maximum diagonal ofC1 has lengthρ1, and, hence, each side ofC1 has length
ρ1/
√

d− 1.
Additionally, we observe that, for any pair of pointsa ∈ Ba andb ∈ Bb, there exists a ball capS that contains

the pointsa andb in its base of diameterρ such thatVd(ρ) ≤ Vd(ρ2). To see why the latter is true, consider the
following. Without loss of generality assume that the pointa is closer toB2 thanb. Then, consider a 2-dimensional
planeh containing the lineℓ and the pointa and the projection ofb on h. Onh, the point closest toB2 is located
above the projection ofK (see Figure 1(c)).

If S is void of points, the configuration described implies the existence of an emptyd-ball of infinite radius with
a andb in its surface which proves that (a, b) ∈ D(P). In the following, we show that such configuration occurs
with big enough probability.

Let ρ1 be such thatVd(ρ1) is as defined in the statement of the theorem. Leth2 be such thatV(C) = dVd(ρ1)/(d−
1). Letq = ρ2/ρ1. First, we prove upper and lower bounds onq to be used later.

Claim 1. d/
√

d2 − 1 ≤ q ≤ (2d− 1)/(d− 1).

Proof. From the volume ofC, we know thath2/h1 = 1+V(C)/(h1V(B1)). Consider a cone with the same volume
and base asS1. The height of such cone, which is bigger thanh1, is dVd(ρ1)/V(B1). That is,h1 < dVd(ρ1)/V(B1).
Consider also a cylinder with the same volume and base asS1. The height of such cylinder, which is smaller
than h1, is Vd(ρ1)/V(B1). That is, h1 > Vd(ρ1)/V(B1). Replacing those bounds and using that the fact that
V(C) = dVd(ρ1)/(d− 1), we get

d
d− 1

≤ h2

h1
≤ 2d− 1

d− 1
. (4)

Consider a 2-dimensional projection of the configuration described (see Figure 2(a)). LetR be the radius ofB.
Then, using Pythagoras’ theorem,R2 = (ρ2/2)2 + (R− h2)2 = (ρ1/2)2 + (R− h1)2. Subtracting,

q2 = 1+
(R− h1)2 − (R− h2)2

(ρ1/2)2

≥ 1+

(
h2

h1
− 1

) (
1− 1

2− h1/h2

)

=
h2

h1(2− h1/h2)
.

ρ1/2

ρ2/2

R
R− h1

R− h2

(a) Ratio of diameters.

K1

K2

F

(b) Projection ofF, K1, andK2 in two dimensions.

Figure 2: Illustration of Theorem 4.

Using Inequality (4),

q2 ≥ d
d− 1

· 1
2− (d− 1)/d

=
d2

d2 − 1
.
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Which proves the lower bound. For the upper bound, consider the conesK1 andK2 inscribed inS1 andS2

respectively (see Figure 2(b)). It can be seen that

V(K1 ∪ F) > V(K2). (5)

The volumes ofK1 andK2 are

V(K1) =
h1V(B1)

d
=

h1C(d− 1)ρd−1
1

d2d−1

V(K2) =
h2V(B2)

d
=

h1C(d− 1)ρd−1
1

d2d−1
.

Replacing in (5), the following inequality holds,

ρd−1
2

(
ρ2 −

h2

h1
ρ1

)
< ρd−1

1

(
ρ2 −

h2

h1
ρ1

)
.

Given thatρd−1
2 > ρd−1

1 , it must beρ2 < ρ1h2/h1. Using Inequality (4), we haveq < (2d− 1)/(d− 1).

For anyd > 1, let C(d) = πd/2/Γ(1 + d/2), whereΓ(·) is the Gamma function. We compute the volume of
F \ (C ∪ K) asV(F) − V(C ∪ K).

V(F) = C(d − 1)
∫ h2−h1

0

(
ρ1/2+

ρ2/2− ρ1/2
h2 − h1

z

)d−1

dz

=
V(C)

d
· qd − 1

q− 1
.

V(C ∪ K) = C(d− 1)
(
(ρ1/2)d−1

∫ ρ1(h2−h1)/ρ2

0
dz+

∫ (h2−h1)

ρ1(h2−h1)/ρ2

rK(z)d−1dz
)

= C(d− 1)
(
(ρ1/2)d−1

∫ ρ1(h2−h1)/ρ2

0
dz+

(
ρ2/2

h2 − h1

)d−1 ∫ (h2−h1)

ρ1(h2−h1)/ρ2

zd−1dz
)

= V(C)
1
q

(
1+

1
d

(
qd − 1

) )
.

Thus,

V(F \ (C ∪ K)) = V(C)

(
1
d
· q

d − 1
q− 1

− 1
q

(
1+

1
d

(qd − 1)

))

=
V(C)

d

(
qd − 1
q− 1

− d+ qd − 1
q

)

=
V(C)

d

(
qd − 1
q− 1

− qd−1 − d− 1
q

)

=
V(C)

d

(
qd−1 − 1

q− 1
− d− 1

q

)

=
V(C)

d

d−2∑

i=0

(
qi − 1

q

)
. (6)

Using Claim 1 and the fact thatV(C) = dVd(ρ1)/(d− 1) in Equation (6),V(F \ (C ∪ K)) ≥ κ1(d)Vd(ρ1). Given
thatε ≤ α(d)/e, we know thatVd(ρ1) ≥ 1/(κ2(d)n), thenV(F \ (C ∪ K)) ≥ κ1(d)/(κ2(d)n). Then, the probability
that F \ (C ∪ K) contains at least one point ofP is at least 1− (1− κ1(d)/(κ2(d)n))n ≥ 1− e−κ1(d)/κ2(d). Consider
the bodyF \ (C ∪ K) evenly partitioned into 2(d− 1) parts. The probability that any given one of these parts of
F \ (C ∪ K) contains at least one point ofP \ {a}, for somea ∈ P, is at least 1− (1− κ1(d)/(κ2(d)n(2d− 2)))n−1 ≥
1− e−κ1(d)/(2κ2(d)(2d−2)). Conditioned on the existence of two pointsa, b ∈ P located as described earlier, letS be a
ball cap of baseB (of diameterρ) such thatB containsa andb andS ⊂ S2 (see Figure 1(c)). Such cap exists as
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shown before. The probability thatS is void of points ofP is lower bounded by upper bounding its volume. We
know thatV(S) ≤ V(S2), andV(S2) can be upper bounded consideringS1 andS2 \S1 separately, which we do as
follows.

V(S2) − V(S1) ≤ C(d− 1)(ρ2/2)d−1(h2 − h1)

≤ C(d− 1)

(
2d− 1

2(d− 1)
ρ1

)d−1

(h2 − h1)

=

(
2d− 1
d− 1

)d−1 d
d− 1

Vd(ρ1).

ThenV(S) ≤ κ2(d)Vd(ρ1). Thus, the probability thatS is empty is at least

(1− κ2(d)Vd(ρ1))n−2 ≥ exp

(
−κ2(d)Vd(ρ1)(n− 2)

1− κ2(d)Vd(ρ1)

)
.

Replacing, we get

Pr ((a, b) ∈ D(P)) ≥ α(d) exp

(
−κ2(d)Vd(ρ1)(n− 2)

1− κ2(d)Vd(ρ1)

)

= ε.

Corollary 1. For any n > 1 and0 < ε ≤ α/e, whereα =
(
1− e−(2−

√
3)/14

) (
1− e−(2−

√
3)/56

)
, given the Delau-

nay graph D(P) of a set P of n points distributed uniformly and independently at random in a unit circle, with
probability at leastε, there is an edge(a, b) ∈ D(P), a, b ∈ P, such that

d(a, b) ≥ 2 3

√
ln (α/ε)

14
√
π (n− 2+ ln (α/ε))

.

Proof. Instantiating Theorem 4 in dimensiond = 2, we know that with probability at leastε there is an edge
(a, b) ∈ D(P), such thatd(a, b) ≥ ρ1, where

V2(ρ1) =
ln (α/ε)

7 (n− 2+ ln (α/ε))
.

We upper bound the area of the circular segment of chordρ1 with the area of the rectangle circumscribing it.

V2(ρ1) ≤ ρ1


1
√
π
−

√
1
π
−
ρ2

1

4

 .

Hence,

√
ρ2

1

π
−
ρ4

1

4
≤ ρ1√
π
− V2(ρ1).

Given thatρ1/
√
π ≥ V2(ρ1), we can square both sides getting

ρ4
1 ≥ 4

(
2
ρ1√
π
− V2(ρ1)

)
V2(ρ1)

≥ 4
ρ1√
π

V2(ρ1), becauseV2(ρ1) ≤ ρ1/
√
π.

Then we getρ1/2 ≥ 3

√
V2(ρ1)/(2

√
π) and replacingV2(ρ1) the claim follows.
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Corollary 2. For any n > 1 and 0 < ε ≤ α/e, whereα =
(
1− e−κ1(3)/κ2(3)

) (
1− e−κ1(3)/(8κ2(3))

)
, κ1(3) = 1/2 −

7/(6
√

8), andκ2(3) = 10+ 3/8, given the Delaunay graph D(P) of a set P of n points distributed uniformly and
independently at random in a unit ball inR3, with probability at leastε, there is an edge(a, b) ∈ D(P), a, b ∈ P,
such that

d(a, b) ≥
√

2
4

√
3
√

48/π4 ln (α/ε)
κ2(3) (n− 2+ ln (α/ε))

.

Proof. Instantiating Theorem 4 ind = 3, we know that with probability at leastε there is an edge (a, b) ∈ D(P),
a, b ∈ P, such thatd(a, b) ≥ ρ1/

√
2, where

V3(ρ1) =
ln (α/ε)

κ2(3) (n− 2+ ln (α/ε))
.

We upper bound the volume of the ball cap of base diameterρ1 with the volume of the cylinder circumscribing
it.

V3(ρ1) ≤
πρ2

1

4


3

√
3
4π
−

√(
3
4π

)2/3

−
ρ2

1

4

 .

Hence,
√√
π

4
3

√
3
4π


2

ρ4
1 −
π2

64
ρ6

1 ≤
πρ2

1

4
3

√
3
4π
− V3(ρ1).

Given thatπρ2
1/4

3
√

3/(4π) ≥ V3(ρ1), we can square both sides getting

π2

64
ρ6

1 ≥
2
πρ2

1

4
3

√
3
4π
− V3(ρ1)

 V3(ρ1)

≥
πρ2

1

4
3

√
3
4π

V3(ρ1), becauseV3(ρ1) ≤ πρ2
1/4

3
√

3/(4π).

Then we getρ1/2 ≥
4

√
3
√

48/π4V3(ρ1) and replacingV3(ρ1) the claim follows.
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