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Abstract

Motivated by low energy consumption in geographic routimgvireless networks, there has been recent interest
in determining bounds on the length of edges in the Delaunagigof randomly distributed points. Asymptotic
results are known for random networks in planar domainshisgaper, we obtain upper and lower bounds that
hold with parametric probability in any dimension, for pwiristributed uniformly at random in domains with
and without boundary. The results obtained are asymptiytiight for all relevant values of such probability and
constant number of dimensions, and show that the overhealdiped by boundary nodes in the plane holds also
for higher dimensions. To our knowledge, this is the first poshensive study on the lengths of long edges in
Delaunay graphs.
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1. Introduction

We study the length of a longest Delaunay edge for pointsaauhgldistributed in multidimensional Euclidean
spaces. In particular, we consider the Delaunay graph fet afs1 points distributed uniformly at random in a
d-dimensional body of unit volume. It is known that the prottigbthat uniformly distributed random points are
not in general positicﬂwis negligible and therefore it is safe to focus on generis sépoints |[-B], which we do
throughout the paper.

The motivation to study such settings comes from the Randeant&tric Graph (RGG) model in whicmodes
are distributed uniformly at random in a disk or, more geltgraccording to some specified density function on
d-dimensional Euclidean spa& [4]. The problem has atlaetsent interest because of its applications in energy-
efficient geometric routing and flooding in wireless sensor nete/(see, e.g L5l 6| @, 8)).

Related Work.For n random points uniformly chosen from the unit disk, Kozmatkeo, Sharir, and Stupﬂ[G]
show that the asymptotic length of a longest Delaunay edgerdts on the distances of the endpoints from
the disk boundary. More specifically, letbe the sum of these two distances; their boundsC{glogn)/n)
if o < ((logn)/n)?3, O(4/(logn)/n) if o > +/(logn)/n, and O((logn)/(nc)) otherwise. Kozma et al. also
show, in the same setting, that the expected sum of the sjofedl Delaunay edge lengths®(1). In E] the
authors consider the Delaunay triangulation of an infindledom (Poisson) point set ohdimensional space.
In particular, they study dierent properties of the subset of those Delaunay edges etehpincluded in a cube
[0, nY/9] x- - -x[0, n'/9]. For the maximum length of a Delaunay edge in this settimgy bbserve that in expectation
is in ©(log"? n).

The lengths of longest edges in geometric graphs induceartjom point sets has also been studied for graphs
related to the Delaunay graph, including Gabriel gram}s@hd relative neighborhood (RNG) grapE[El, 12]. In
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Surface of spherical cap whose orthodromic diamete
is a Delaunay edge, when points are sampled from O(%) Q (nﬁggl(/l‘jl))
the surface of a-sphere.

=

Volume of ball cap whose base diameter is a Delaun ayo(mg(n/g)) Q( log(1/e) )
edge, when points are sampled frord-aall. n n+log(1/e)

Table 1: Summary of results in asymptotic notation for cansd.

particular, Wan and YmO] show that farpoints uniformly distributed in a unit-area disk, the raticthe length

of a longest Gabriel edge tg/(Inn)/(xn) is asymptotically almost surely equal to 2, and the expmkotember

of “long” Gabriel edges, of length at leastZIn n + £)/(xn), is asymptotically almost surely equal te?, for
any fixedé. In [13], while studying the maximum degree of Gabriel ana aaphs, the authors observe that
the probability that the maximum edge length is greater thglogn)/n tends to zero, a bound that they claim
become®(((logn)/n)Y/%) for d dimensions. An overview of related problems can be founﬂj.[

Interestin bounding the length of a longest Delaunay edbggardimensional spaces has grown out of extensive
algorithmic work [15] 16/_17] aimed at reducing the energgszamption of geographically routing messages in
Radio Networks. Multidimensional Delaunay graphs are wteitlied in computational geometry from the point of
view of eficient algorithms to construct them (sek [3] and refererfoe®in), but only limited results are known
regarding probabilistic analysis of Delaunay graphs imhigzlimensiondﬂ8].

Overview of Our Results.We study the probabilistic length of longest Delaunay edgegoints distributed
uniformly in geometric domains in two and more dimensionisic& the length of the longest Delaunay edge is
strongly influenced by the boundary of the enclosing regiea study the problem for two cases, which we call
with boundaryandwithout boundary

Our results include upper and lower boundsdatimensional bodies with and without boundaries, that fiaid
a parametric error probabilityand are computed up to the constant factors (they are tigghaggmptotically). In
comparison, the upper bounds presentediin [6] are only a®fimpare restricted to two dimensiorg £ 2), and
apply to domains with boundary (disks), although resulthauit boundary are implicitly given, since the results
are parametric in the distance to the boundary.

All our bounds apply for angl > 1. The asymptotic results, shown in Table 2, are tighef6? < ¢ < n™¢, for
any constant > 0, andd € O(1). As it can be seen in TaH[& 1 where the results are denstedmotically for
readability. To the best of our knowledge, this is the firshpoehensive study of this problem.

The precise results obtained are detailed in TBble 2. (Ref€ectior R for necessary notation.) In order to
compare upper and lower bounds for bodies with boundary,dtticial to notice that we bound the volume of a
circular segment (2D) and the volume of a ball cap (3D), witieh be approximated by polynomials of third and
fourth degree, respectively, on the diameter of the bas@eblpounds are proved exploiting the fact that, thanks
to the uniform density, it is very unlikely that a “large” wohe is void of points. Lower bounds, on the other hand,
are proved by showing that a configuration that yields a Dedgwedge of a certain length is not very unlikely.

In the following section, some necessary notation is inioedl. Upper and lower bounds for enclosing bodies
without boundaries are shown in Sectidn 3, and the case wiihdbaries is covered in Sectibh 4.

2. Preliminaries

The following notation will be used throughout. We will rast attention to EuclidearL) spaces. Al-sphere
S = Sy, of radiusr is the set of all points in ad(+ 1)-dimensional space that are located at distar(teeradius)
from a given point (thecente)). A d-ball, B = B, of radiusr is the set of all points in d-dimensional space
that are located at distaneé most r(theradius) from a given point (the cente)). Theareaof ad-sphereS (in
(d + 1)-space) is itsl-dimensional volume. Theolumeof a d-ball B (in d-space) is itd-dimensional volume.
We refer to aunit sphereas a sphere of area 1 andiait ball as a ball of volume 1. (This is in contrast with
the definition of a “unit” ballsphere as a unit-radius bafphere. In particular, notice that in our definition the
unit sphere isotthe boundary of a unit ball. We find it convenient to standegdhe volumfarea to be 1 in all
dimensions.) _

Let P be a set of points ondsphereS. Given two pointsa, b € P, letabbe the arc of a great circle between
them. Lets(a, b) be the length of the arab, which is also known as therthodromic distancéetweera andb on
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Table 2: Summary of resulta;, a3 are constantsz(d) andkz(d) are functions ofl.

the spheré. Let theorthodromic diameteof a subseX C S be the greatest orthodromic distance between a pair
of points inX. A spherical cap on Ss the set of all points at orthodromic distance at nrosbm some center
pointc € S. Let Ay(X) be the aread-volume) of a spherical cap of orthodromic diameteion ad-sphere of
surface area 1. Aall cap of Bis the intersection of d-ball B with a closed halfspace, bounded by a hyperplane
h, in d-space; thdaseof a ball cap is thed — 1)-ball that is the intersection dfwith the ballB. Let V4(x) be the
d-volume of a ball cap of base diameterof ad-ball of volume 1. For any pair of points b, let d(a, b) be the

Euclidean distance betwearandb, i.e. d(a, b) = ||56||2. Let D(P) be the Delaunay graph of a set of poiRts
The following definitions of a Delaunay grapB(P), of a finite setP of points in ad-dimensional body follow
the standard definitions of Delaunay graphs (see, e.g.,I'€he8.6 in [B]).

Definition 1. Let P be a generic set of points on a d-sphere S.

(i) AsetFc P of d+1points define the vertices ofzelaunay facef D(P) if and only if there is a d-dimensional
spherical cap Cc S such that F is contained in the boundai§,, of C and no points of P lie in the interior
of C (relative to the sphere S).

(i) Two points ab € P form aDelaunay edgean arc of OP), if and only if there is a d-dimensional spherical
cap C such that & € 9C and no points of P lie in the interior of C (relative to the spi S).

Definition 2. Let P be a generic set of points in a d-ball B.

(i) A set Fc P of d+ 1 points define the vertices offzelaunay facef D(P) if and only if there is a d-ball B
such that F is contained in the bounda#g’, of B' and no points of P lie in the interior of’'B

(ii) Two points gb € P form aDelaunay edgean arc of O(P), if and only if there is a d-ball Bsuch that
a, b € 9B’ and no points of P lie in the interior of'B

The following inequalitiesI_L_;llg] are used throughout

e¥lN <1 _x<eX for0O<x< 1. (1)

3. Enclosing Body without Boundary

The following theorems show upper and lower bounds on thgthenf arcs in the Delaunay graph od-@phere.
3



3.1. Upper Bound

Theorem 1. Consider the Delaunay graph(P) of a set P of n points in dimension® 1, where n> d + 2,
distributed uniformly and independently at random in a uhgphere, S. Then, f@ < & < 1, the probability is
at leastl — ¢ that there is no ar@ab € D(P), a,b € P, such that

(35 2e)

Ad(6(a.b) = — 22

(*)
Proof. Let E, be the event that “there exists an alze D(P), a,b € P, with inequality &) satisfied.” Our goal is
to prove thaP(E,) < &.

Let us consider a fixed pair of poin&,b € P. We letE,p, be the event thaab € D(P). For any subse® c P
of d + 1 points containing andb, let Cq denote the spherical cap throu@tand letFq denote the event that the
interior of Cq contains no points a® (i.e.,int(Cq) N P = 0).

Thus, we can writd,, = g Fo as the union, over a(l(dfz)z_z) = (gj) subset) c P with |Q] = d+ 1 and
a,b € Q, of the eventd=q. Then, by the union bound, we know thtE.p) < 3o P(Fq). Further, in order for
eventFq to occur, all points oP excepthed + 1 points ofQ must lieoutsidethe spherical cagq throughQ;
thus,P(Fg) = (1 — ua(Cq))™ @+, whereuq(Cq) denotes the-volume ofCq.

We see thaP(Fq) < (1 - Ag(6(a, b)) @D, since, for any subse > {a, b}, thed-volumeuq(Cq) is at least
as large as thd-volume, Aq4(5(a, b)), of the spherical cap having orthodromic diameié, b). In other words,
A4(6(a, b)) is thed-volume of the smallest volume spherical cap whose bounpasges througa andb. This
property can be seen by noticing that, fixing a spherical t@plargest arc is an orthodromic diameter. Hence,
fixing the arcab, the smallest spherical cap whose boundary passes thebagtib has orthodromic diameter
é(a, b).

Altogether, we get

P(Eap) < Z P(Fo) = Z(]_ _Iud(CQ))n—(dJrl)
Q Q

< (37 2 Adtota oo+

Now, the event of interest is

E, = U Eab.
a,beP:(x) holds

The inequality ) is equivalent to

(n-d- DAata ) > n[5)(3Z3)).

which is equivalent to

(e—Ad(a(a,b)))‘”‘d‘l) <&
- (n\/n-2
()2

Since, by Inequalitl)e ™ > 1 - x, the above inequality implies that

&

(1-Ag(s@ )™t < s,
()G-2)

which implies that

(oo Astswomre e

Using the union bound, we get

P(E.) = P[ U Ea,b) < Z P(Eap).

a,beP:(x) holds a,beP:(x) holds



Since each term®(Eap) in the above summation is bounded abovefgtﬁ)(l — Ag(6(a, b)) (@D, and there are at
most(3) terms in the summation, we get

PE)< D, P(Ea)

a,beP:(x) holds

<(5)la-3) - Adetapme <

O

The following corollaries fod = 1 andd = 2 can be obtained from Theorélin 1 using the correspondingcairf
areas.

Corollary 1. In the Delaunay graph [P) of a set P of n> 2 points distributed uniformly and independently at
random on a unit circle I-sphere), with probability at least — ¢, for 0 < £ < 1, there is no arcab € D(P),
a,b e P, such that
In((5)/e)
n

-2

Corollary 2. In the Delaunay graph [P) of a set P of n> 3 points distributed uniformly and independently at
random on a unit sphere{sphere), with probability at least — ¢, for 0 < & < 1, there is no arab € D(P),
a, b e P, such that

é6(a,b) >

1 2In((3)(n-2)/e)
5(a,b) > ﬁcosl 1- B —

Proof. The radius of a unit 2-sphere &= 1/(2+/n). Thus, the surface area of a spherical cap of a 2-sphere is
2nRh = +/rh, whereh is the height of the cap. On the other hand, the central arfgdecap with orthodromic
diametelp is 2rp/ \/n = 2+/np. Thus, the height i = 1/(2 vr)(1 - cos(v/zp)). This yields that the surface area

of a spherical cap of a 2-sphere whose orthodromic diam&teisi (1 — cos(v/np))/2. Replacing in Theorefd 1,
the claim follows. O

3.2. Lower Bound

Theorem 2. Consider the Delaunay graph(P) of a set P of n> 2 points distributed uniformly and independently
at random in a unit d-sphere, S. Then, for @y ¢ < 1 andp such that

In((e- 1)/(¢%))
AR = T - i) A"
Ad(20) <1-1/(n-1),

the probability is at least that there is an ar@b € D(P), a,b € P, such that A(5(a, b)) > Aq(p).

Proof. To see that the claim is not vacuously true,diand letAy(20) = f(d)Aq(p), for some functiorf (-). Then,
we want to show thaty(20) = f(d) In((e—1)/(€%))/(n—2+In((e—1)/(%))) < 1-1/(n—1) for some < ¢ < 1.
This is true fore > (e— 1)/(€exp((n - 2)2/(1+ (n— 1)(f(d) - 1))).

In order to prove the claim, we consider a configuration givgm specific pair of points and a specific empty
spherical cap circumscribing them, that would yield a Defauarc between those points. Then, we relate the
probability of existence of such a configuration to the distabetween the points. Finally, we relate this quantity
to the desired parametric probability. The details follow.

For any pair of points, b € P, by Definition[1, for the ar@b to be inD(P), there must exist d-dimensional
spherical cafC such that andb are located on the boundary of the cap base, and the capesoffads void of
points fromP. We compute the probability of such an event as follows.

Letp’ > p be such thafy(20’) — A4(20) = 1/(n—1). Such a valug’ exists becausfy(20) < 1-1/(n-1).
Consider any poind € P. The probability,p;, that some other poir is located so thgd < §(a,b) < p’ can
be computed by considering the spherical annulus centéraavith p (resp.,p’) equal to the minimum (resp.,
maximum) orthodromic distance ®(i.e., we consider the fierence between a spherical cap of orthodromic
diameter 2’ and a spherical cap of orthodromic diametg).2Then,p; = 1 - (1-1/(n—-1)"* > 1 - 1/e, by
Inequality [1).
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The spherical cap with orthodromic diamet¢a, b) is empty with probability(1 — Aq(6(a, b)))"2. To lower
bound this probability we consider separately the sphecaa with orthodromic diametgr and the remaining
annulus of the spherical cap with orthodromic diaméferb). The probability that the annulus is empty, cajbit
is lower bounded by upper bounding the afa&(a, b)) — Ada(p)< Ad(p’) — Aa(p) < Ag(20") — Ad(20) = 1/(n—1).
Then,p; > (1 - 1/(n- 1))"2 > 1/e, by Inequality [1).

Finally, the probability that the spherical cap with orthacdhic diametep is empty, call itps, is, by Inequal-
ity @,

s = (1— Ag(o)"2 2 exp(— A 2)

_ ex In e-1 3 Ee
ol

Therefore,

1\ 1 €%

Pr(abe D(P)) > pypzps 2(1— 5) -

=&.

O

The following corollaries fod = 1 andd = 2 can be obtained from Theorélin 2 using the correspondingcairf
areas.

Corollary 3. In the Delaunay graph [P) of a set P of n> 2 points distributed uniformly and independently at
random on a unit circleI-sphere), with probability at leagt, for any(e - 1)/ exp(n+4/n) < e < 1, there is an
arcabe D(P), a,b € P, such that

In((e- 1)/(¢%))
n-2+In((e-1)/(e%))’

é(a,b) >

Proof. The lower bound om(a, b) can be obtained by replacing in TheorEm 2 the surface ofgihergcal cap,
which ford = 1 is the length of the arc. Regarding the lower bouna an the proof of Theorefl2, it was shown
that the conditions of the theorem can be met by imposing ad@eund ore that depends od. Usingd = 1, we
obtain thatf (d) = 2 ande > (e - 1)/(€?exp((n - 2)2/(1+ (n— 1)(f(d) - 1)) = (e— 1)/ exp(n + 4/n). O

Corollary 4. In the Delaunay graph [P) of a set P of n> 2 points distributed uniformly and independently
at random in a unit sphere2(sphere), with probability at least, for any em2V-1-1 < o < 1 there is an arc
abe D(P), a,b € P, such that

2In((e— 1)/(928))
n-2+In((e-1)/(e%)) |

1
5(a,b)> —cos?t|1-
(ab) V-

Proof. As shown in the proof of Corollaif{l 2, the surface area of a Ephkcap of a 2-sphere whose orthodromic
diameter i is (1 - cos(v/rp))/2. Replacing in Theorefd 2, the claim follows. O

4. Enclosing Body with Boundary

The following theorems show upper and lower bounds on thgthesof edges in the Delaunay graph id-hall.
(Recall that we refer to a unit ball as a ball of volume 1.)

4.1. Upper Bound

Theorem 3. Consider the Delaunay graph(B) of a set P of n> d + 1 > 2 points distributed uniformly and
independently at random in a unit d-ball, B. Then, @ox ¢ < 1, the probability is at leasl — ¢ that there is no
edge(a, b) e D(P), a,b € P, such that

Vau(d(a, b)) > (%)



Proof. In order to prove this claim, we consider any one set-ot points inP. Then, we relate the probability that
the ball circumscribing the set is empty, to the distanceussng the points. Finally, we combine the probabilities
for all possible pairs of points and sets and we relate théstity to the desired parametric probability. The details
follow.

Let E, be the event that “there exists an edgb)(e D(P), a,b € P, with inequality éx) satisfied” Our goal is
to prove thaP(E,) < &.

Let us consider a fixed pair of points,b € P. We letE,, be the event thatp) € D(P). For any subse® c P
of d + 1 points containing andb, let Bo denote the ball throug® and letFg denote the event that the interior of
B contains no points d? (i.e.,int(Bg) N P = 0).

Thus, we can writd,, = g Fo as the union, over a(l(dzz)zfz) = (Qj) subset) c P with |Q] = d+ 1 and
a,b € Q, of the eventdq. Then, by the union bound, we know thtEa) < > P(Fgq). Further, in order
for eventFq to occur, all points oP excepthed + 1 points ofQ must lieoutsidethe ballBg throughQ; thus,
P(Fg) = (1 - ud(Bg N B))™ @1 whereuq(Bg N B) denotes the-volume ofBg N B. (Recall that points lie only
insideB.)

We see thaP(Fq) < (1 - Vq(d(a, b))+, since, for any subséd > {a, b}, the d-volumeuq(Bg N B) is
at least as large as tlievolume,Vy(d(a, b)), of the ball cap oB having base diametel(a, b). In other words,
Vq4(d(a, b)) is thed-volume of the smallest volume ball cap Bfwhose base boundary passes throagindb.
This property can be seen by noticing that, fixing a ball cap Jargest segment in the base is a diameter. Hence,
fixing a segmentg, b), the smallest ball cap whose boundary passes thraagiub has base diamete(a, b).

Altogether, we get

P(Ean) < ) P(FQ) = ) (1~ ua(Bo N B)™
Q Q

: (2 - i)(l — Va(d(a, b)) .

Now, the event of interest is
E.= |J Ean
a,beP:(+x) holds
The inequality ¢+) is equivalent to

(n-d- vaaa.b) = n(( 5[5 3.

which is equivalent to
(e—vdw(a.b»)(”*d*l) <5

= (n\(n-2\"

()(E-2)
Since, by Inequality[l)e ™ > 1 - x, the above inequality implies that
(1= Vg(d(a b)Y < ———

GG

[o)la=3) - vatetapmye <.

which implies that

Using the union bound, we get

Ea.b] < Z P(Eap).
a,beP:(+x) holds

P(E.) = P[

a,beP:(xx) holds
Since each term®(E,p) in the above summation is bounded abovafgbj)(l — Vy(d(a, b)) @D, and there are at
most(g) terms in the summation, we get

PE)< D, P(Ean)

a,beP:(xx) holds

<(o)a= ) - vatetaomee b <o



The following corollaries fod = 2 andd = 3 can be obtained from Theordrh 3 using the corresponding
volumes.

Corollary 5. In the Delaunay graph [P) of a set P of n> 3 points distributed uniformly and independently at
random in a unit diskZ-ball), with probability at leastl - &, for (3)(n - 2)e”V20-3/7 < & < 1, there is no edge

(a,b) € D(P), a,b € P, such that
J 16 In((3)(n-2)/2)
d@b= J Vo on3

Proof. Consider the intersection of the radius of the unit disk padicular to &, b) with the circumference of the
unit disk, call this poinix. The area of the triangleabxis a strict lower bound oW(d(a, b)). From Theorerfll3,
we have the condition

In((5)(n- 2)/8)‘

Va(d(a, b)) > ———

Thus, itis enough to show that

dab( 1 [1_dabp)_ In((p)n-2ye)
2 (7;_ x4 ]Z n-3

Makingp = d(a, b) /7 /2, we want

In((5)(n - 2)/e)

2_pt<p-m—F—F,
proptsp-m— 2)

If d(a, b) < 2 v In((3)(n - 2)/e) /(n - 3), there is nothing to prove because

2w ((3)(n - 2)/e) # 16 In((5)(n - 2/s)
n-3 < va(n-3)

for anye > (5)(n - 2) exp(- V2(n - 3)/x). Otherwise, we have that> x In ((3)(n - 2)/z) /(n - 3), and by squar-
ing both sides off{2) we get

n n 2
2 2pn (D0 o) [,r'n (@e- 2>/s>] |

which is implied by
In((5)(n- 2)/e)
Substitutinge = d(a, b) v/7/2 into the above inequality, the claim follows. O

Corollary 6. In the Delaunay graph [P) of a set P of n> 4 points distributed uniformly and independently at
random in a unit ball 8-ball), with probability at leastl — &, for (g)(”j)e‘zm—“)/@\/a < & < 1, there is no edge
(a,b) € D(P), a,b € P, such that

| 96 n((5)(2")/)

d(a,b)Z m n_4

Proof. Consider the intersection of the radius of the unit ball padicular to &, b) with the surface of the unit
ball, call this pointd. The volume of the cone whose base is the disk whose diansggeb) and its vertex igl is
a strict lower bound oiv,(d(a, b)). From Theorerfil3, we have the condition

n (7))

Vs(d(a,b) > —22
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Thus, it is enough to show that

7 (d(ab)\?( 1 [1  d(a b)? In((5)(";)/e)
5(7) (ﬁ_ 4 )Z n-4
Makingp = d(a, b) vx/2, we want

I n\/n-2 P
/p4—p63p2—3\/7_rn((2)(2)/), @)

n-4

If d(a, b) < \/12 In((5)(";%)/e) /( Va(n - 4)), there is nothing to prove because

VO oo o

Vr(n—4) 2 n-4 °

for anyz > (5)(";7) expg—Z(n— 4)/(3vm)). Otherwise, we have thaf > 3vxIn((5)(",?)/z)/(n - 4), and by
squaring both sides dfl(3) we get

n\/n-2 n\/n-2 2

08 > 602 \/Eln ((a)(—ZA,)/S) _ [3 \/Eln ((a)(_zdr)/g)) ’

which is implied by
In n\/n-2 /8
Substitutinge = d(a, b) v/7/2 into the above inequality, the claim follows. O

4.2. Lower Bound

As in the case without boundary, we prove our lower bound loyvéig a configuration given by a specific pair
of points and a specific empty body circumscribing them, Waild yield a Delaunay edge between those points.
Then, we relate the probability of existence of such conéian to the distance between the points and to the
desired parametric probability.

Theorem 4. For any d> 1, let

a(d) = (1 _ e—Kl(d)/Kz(d)) (1 _ e—Kl(d)/(zkz(d)(zd-z)))

d-2 i
1 d d2-1
w0-55 [ )
2d-1\*" d
Kz(d) = (1+(ﬁ) m)
Forany n> 1and0 < ¢ < «a(d)/e, given the Delaunay graph(B) of a set P of n points distributed uniformly

and independently at random in a unit d-ball, with probaibt leaste, there is an edgéa, b) € D(P), a,b € P,
such that da, b) > p1/ vd — 1, where

In (a(d)/e)

Vo) = @ =2+ In @@/

Proof. We illustrate the proof in Figurdd 1 ail 2. Throughout theofirave refer to a body and its set of space
points with the same name indistinctly. \&¢X) be the volume of a body (or a set of space poitsl et the unit
ball where points are sampled be calBdConsider two ball caps d, concentric on a liné, calledS; andS,,
with basesB; andB, of diameterg; andp,, and height$; andh; respectively (see Figufe I[a)). InsiSe\ Si,
consider the followingl-dimensional bodies of height — h;: a cylinderC with baseB;; a coneK of baseB;;
and a frustunt of basesB, andB; (see Figurg LI(p)).
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P2

P1
S; ¢
LS hy E
TN
s 4
S2\ Sy/ B
i K
(a) Projection oB, S, andS; in two dimensions. (b) Projection ofF, K, andC in two dimensions.

a/

(c) Points inF \ K U C for d = 3 projected in two
dimensions.

Figure 1: lllustration of Theoreifd 4.
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Consider the bod¥ \ (C U K) evenly partitioned into 2{— 1) pieces such that two of them, call th&xpand
By, have the following property. For any pair of poirds B, andb € By, the pointsa andb are separated by a
distance of at leagt;/ vd — 1. To see why such a patrtition exists, consided a ()-dimensional cube, call &,,
inscribed in the base @&;. The maximum diagonal d€; has lengttp;, and, hence, each side 6f has length
p1/Vd -1,

Additionally, we observe that, for any pair of poirds B, andb € By, there exists a ball cap that contains
the pointsa andb in its base of diametgr such thaty(p) < V4(o2). To see why the latter is true, consider the
following. Without loss of generality assume that the paiig closer toB, thanb. Then, consider a 2-dimensional
planeh containing the ling and the point and the projection ob onh. Onh, the point closest t®; is located
above the projection df (see Figur§ I(})).

If Sis void of points, the configuration described implies this&nce of an emptg-ball of infinite radius with
a andb in its surface which proves thad, () € D(P). In the following, we show that such configuration occurs
with big enough probability.

Letp; be such tha¥y(p,) is as defined in the statement of the theorem.hdte such tha/(C) = dVy(e1)/(d—

1). Letq = p2/p1. First, we prove upper and lower boundseto be used later.

Claim 1. d/ Vd? -1 < q < (2d - 1)/(d - 1).

Proof. From the volume o€, we know thah,/h; = 1+ V(C)/(h:V(By)). Consider a cone with the same volume
and base aS;. The height of such cone, which is bigger thanis dVy(o1)/V(By). Thatis,h; < dVy(o1)/V(By).
Consider also a cylinder with the same volume and bas®;asThe height of such cylinder, which is smaller
than hy, is V4(o1)/V(B1). That is,h; > Vy4(e1)/V(B1). Replacing those bounds and using that the fact that
V(C) = dVy(p1)/(d - 1), we get

-

d , 2d-1
—d_lﬁ—lﬁ—d_l. (4)

Consider a 2-dimensional projection of the configuratiosctdi®ed (see Figue Z[a)). LBtbe the radius oB.
Then, using Pythagoras’ theoreR?, = (02/2)? + (R— hy)? = (p1/2)? + (R— hy)?. Subtracting,
(R=hy)* = (R-hyp)?
(p1/2)?

ho 1
> 1+(h—l - 1)(1— S hl/hz)
h>

" m@-hi/hy)

=1+

p2/2
p1/2

(a) Ratio of diameters. (b) Projection ofF, K1, andKj in two dimensions.

Figure 2: lllustration of Theoreid 4.

Using Inequality[[#),
,_ d 1 d?
q Z . = .
d-1 2-(d-1)yd d-1
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Which proves the lower bound. For the upper bound, constiecbneX; andK; inscribed inS; andS;
respectively (see Figufe 2[b)). It can be seen that

V(K1 UF) > V(Ky). (5)
The volumes oK; andK, are

hV(B)  hiC(d - 1)

e N
hoV(By)  hiC(d — 1)pd-1
V(Ky) = ™2 (5 2) _ o 1

Replacing in[(b), the following inequality holds,
h h
P32 = Zp1) < 037 o2 — 2.
hy hy

Given thatog™* > p$~2, it must bep, < p1hp/hy. Using Inequality4), we have < (2d — 1)/(d - 1).
[l

For anyd > 1, letC(d) = n%?/T'(1 + d/2), wherel'(-) is the Gamma function. We compute the volume of
F\ (CuUK)asV(F)-V(CuK).

hy—hy _ d-1
V(F) = C(d - 1)[ (pl/z + Mz) dz
0 hy — hy

_V©) -1
d  g-1°

1(n2—h1)/p2 (h2—hy)
V(CUK) = C(d - 1)((p1/2)d-l f dz+ f rK(z)d-ldz)
0

p1(h2—h1)/p2

1(he—h1)/p2 d-1  ~(hp-hy)
=C(d- 1)((p1/2)"*l fo ’ ’ dz+( pa/2 ) f zdfldz)
P

h, —hy J(he—hy) o

_ V(C)%(1+ % (a¢ - 2) )

Thus,

(6)

Using ClainTl and the fact that(C) = dVy(o1)/(d — 1) in Equation[[B)V(F \ (C U K)) > k1(d)Vq4(p1). Given
thate < a(d)/e, we know thatVy(p1) > 1/(k2(d)n), thenV(F \ (C U K)) > «1(d)/(k2(d)n). Then, the probability
thatF \ (C U K) contains at least one point Bfis at least 1 (1 — x1(d)/(k2(d)n))" > 1 — e @/« Consider
the bodyF \ (C U K) evenly partitioned into 2(— 1) parts. The probability that any given one of these parts of
F \ (C UK) contains at least one point Bf\ {a}, for somea € P, is at least 1 (1 — k1(d)/(k2(d)n(2d — 2)))"* >
1 — e*@/(e(d(d-2)) Conditioned on the existence of two poiatd € P located as described earlier, ®be a
ball cap of basd (of diametelp) such thaB containsa andb andS c S, (see Figur§ I(})). Such cap exists as
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shown before. The probability th&tis void of points ofP is lower bounded by upper bounding its volume. We
know thatV(S) < V(Sz), andV(S;) can be upper bounded consideriigandS, \ S; separately, which we do as
follows.

V(S2) - V(Sy) < C(d - 1)(02/2)*(hp — hy)

d-1
<c(d- 1)(%4 (s )

2d-1\"" d
-(51) e
ThenV(S) < «2(d)Vd(e1). Thus, the probability thed is empty is at least

k2(A)Valo)(n - 2))
1 ca(dValpr) /)’

(1= ka(AValpr)™2 > exp(

Replacing, we get

Pr((a.b) € D(P)) > a(d) eXp(‘ Kzl(d—)\/g((g)l\)/(dn(p_l)a)

= E&.
O
Corollary 1. For any n> 1and0 < & < a/e, wherea = (1 - e @ ¥3/14)(1 - e @-V3/5), given the Delau-

nay graph ¥P) of a set P of n points distributed uniformly and independeatlrandom in a unit circle, with
probability at leasts, there is an edgéa, b) € D(P), a,b € P, such that

. In(a/e)
d(a,b) > 2\/14\/,;“1 —-2+In(a/e))

Proof. Instantiating Theorefl 4 in dimensiah= 2, we know that with probability at leastthere is an edge
(a, b) € D(P), such thatl(a, b) > p1, where

In(a/e)

Vel = 70 T in@/a)

We upper bound the area of the circular segment of chowdith the area of the rectangle circumscribing it.

1 1 o
Va(or) < p1| — — 1|= = 22|
2(.01)—,01[\/; 7 4
Hence,
2 4

P P _ p1
O 0P ()
. 4_\/77 2(01)

Given thatp;/ v > V2(p1), we can square both sides getting
4> a(2fL v )v
p1 ( V- 2(p1) | Va(p1)

> 4&V2(p1), because&/,(p1) < p1/ V.
\n

Then we gep1/2 > Va(p1)/(2v/x) and replacing/»(p1) the claim follows.
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Corollary 2. Forany n> 1and0 < & < a/e, wherea = (1— e*K1(3)/K2(3)) (1 - e*“1(3)/(8K2(3))), k1(3) = 1/2 -

7/(6V8), andk»(3) = 10+ 3/8, given the Delaunay graph(P) of a set P of n points distributed uniformly and
independently at random in a unit ball R®, with probability at leask, there is an edgéa, b) € D(P), a,b € P,
such that

o 48/m*In (a/e)
d@b= vz\/Kz(s) (- 2+ Ina/e)

Proof. Instantiating Theorefd4 id = 3, we know that with probability at leastthere is an edgea(b) € D(P),
a,b e P, such thatl(a, b) > p1/ V2, where

In(a/e)

Vs(p1) = k2(3)(N-2+In(a/e))

We upper bound the volume of the ball cap of base diameteiith the volume of the cylinder circumscribing

it.
2 2/3 2
5| s/ 3 3 Pq
V. 2 2) -~
31) < { In (471) 4]

Hence,

2 2
maf3) , 7w 5 7T, 3
Y2 pt - Db < T332 vy ().
4[4 47r] PL 1= 7\ zr Vel

Given that;rpi/4\3/3/ (4r) > V3(p1), we can square both sides getting

2 o2 ,[3
aﬁ? 2 ( Tl 3 In V3(p1) | Va(o1)

i of 3
= 4 \Ni4n

Then we gep;1/2 > \4/\3/48/7T4V3(p1) and replacing/s(o1) the claim follows.

Va(p1), because/s(py) < mp?/44/3/(4n).
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