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Abstract—Mobile video delivery forms the largest part of
the traffic in cellular networks. Thus optimizing the resource
allocation to satisfy a user’s quality of experience is becoming
paramount in modern communications. This paper belongs to
the line of research known as anticipatory networking that makes
use of prediction of wireless capacity to improve communication
performance. In particular, we focus on the problem of optimal
resource allocation for steady video delivery under maximum
average quality constraints for multiple users. We formulate the
problem as a piecewise linear program and provide a heuristic
algorithm, which solution is close to optimal. Based on our
formulation we are now able to trade off minimum video quality,
average quality and offered network capacity.

I. INTRODUCTION

Many reports confirm the recent trends in Internet traffic
evolution: overall mobile traffic increased by 81% compared
to 2013 according to the latest CISCO statistics [1], while
Sandvine [2] states that real-time entertainment is having the
biggest share in this growth (63%) and services such as NetFlix
and YouTube occupy the first positions in the traffic generation
list. At the same time, mobile networks are becoming increas-
ingly constrained by limited spectral resources [3]. We believe
that, in addition to solutions aimed to increase the wireless data
rate, the available resources can be used much more efficiently.

In the literature, many works demonstrated that common
trends and patterns can be used to anticipate traffic demands
by predicting the future capacity in a network: in particular [4]
highlights how network dynamics [5] can be understood,
predicted and linked to human mobility patterns [6] while
in [7] the authors devise to estimate which content is going to
be requested in the future.

Utilizing such sophisticated models to build predictors and
using the resulting prediction for efficient resource allocation is
the objective of anticipatory networking .This work contributes
to the area by investigating resource allocation efficiency when
video delivery is the main traffic source in the network. With-
out being exhaustive, the following provides a brief overview
of some recent works in that area.

The resource allocation problem for a discrete set of video
qualities has been investigated in [8] where it has been
modeled as a Mixed Integer Quadratically Constrained Pro-
gram (MIQCP). Similarly, [9] studied resource allocation for
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uninterrupted video streaming devising a single-user optimal
resource allocation algorithm. [10], [11] devised a solution
using a Mixed Integer Linear Program to maximize through-
put and minimize energy consumption respectively. Finally,
[12] among a few others relaxed the assumption of perfect
knowledge by accounting for prediction reliability and errors.
Following the same direction, we recently presented a general
model for mobile user capacity prediction [13].

In this paper, we study the network resource allocation
problem aimed to minimize the average video re-buffering time
(so called lateness) and, provided this objective is achieved,
maximizing the average video bitrate for multiple users. Our
paper differs from those mentioned above in the following
aspects. We address video bitrate as a continuous quantity as
in current streaming techniques, such as HTTP Live Streaming
(HLS) [14], different segments can be encoded with different
bitrates. Consequently, the average bitrate computed over mul-
tiple segments can take any value between the minimum and
the maximum encoding bitrate.

Considering the video bitrate as a continuous quantity allows
us to formulate the problem as a piecewise linear program
(LP). In this LP, we i) minimize the aggregate lateness among
all users when they are provided with the minimum allowed
video bitrate and ii) the remaining resources are used to
maximize the aggregate video encoding bitrate.

To solve this problem with a fast heuristic, we develop the
Split, Sort & Swap (SS&S) algorithm. it achieves solutions
very close to the optimum faster than standard solvers [15] for
many relevant cases. In our evaluation of a 3GPP compliant
macrocell scenario, SS&S never falls 0.5% below the optimum.

This algorithm starts from a greedy solution obtained in
polynomial time, which is subsequently refined by means of
an iterative process. In each iteration, the algorithm provides
a feasible solution that represents an improvement to the
previous step. This property allows to trade-off algorithm
runtime with quality gain.

We believe that this practical trade-off and the ability to
maximize quality while a minimum lateness is guaranteed,
make our algorithm a promising candidate for a dedicated
media streaming mode in fifth generation cellular networks.
The algorithms low complexity supports online adaptation for
a large number of users with a long prediction horizon.

In the following Section II we define the system model and
discuss the optimization problem. In Section III we describe
the SS&S algorithm, and we analyze its performance in
Section IV. Section V provides our conclusions.



II. PROBLEM DEFINITION

In this paper we address resource allocation for the wireless
downlink of a cellular network when future knowledge about
the achievable data rate is available. To provide a simpler
notation we will consider a system with a single base station
to which all the K users connect. We call the set of users U
and our prediction horizon is T time units and we refer to the
set of time slots as T . In the following, we consider unitary
time unit t = 1, in order for data rates and download size
to be used interchangeably. In the rest of the paper we use
the following assumptions: 1) the future knowledge is perfect
(this does not hold in practice, but the problem solution can
be updated periodically. The present results can be considered
as an upper bound for real scenarios); 2) the average video
bitrate is continuous between 0 and qM (e.g.: by combining
segments of different quality) and 3) the quality of experience
is proportional to the video bitrate.

The quantities of interest are:
• Per user achievable download rate R = {ri,j ∈ [0, rM ], i ∈
U , j ∈ T }, where the entry ri,j represents the average rate
that user i would achieve in slot j if he was using the
cell alone. rM is the maximum data rate of the specific
mobile technology. This represents the future knowledge about
network conditions, where slot 1 is the present slot.
• Minimum requirements D = {di,j ∈ [0, qM ], i ∈ U , j ∈
T }, where di,j is the minimum amount of bytes user i should
receive before the end of slot j in order to stream the video at
the minimum allowed quality. If at any time the user receives
more data than required, the excess can be stored in a buffer
for later use.
• Assigned resources A = {ai,j ∈ [0, 1], i ∈ U , j ∈ T }: each
entry ai,j represents the average fraction of resources assigned
to user i in slot j. In each slot, no user can be assigned more
than the total available rate, 0 ≤ ai,j ≤ 1, nor can the sum of
all the assignments exceed the total available resources in that
slot, 0 ≤

∑
i∈U ai,j ≤ 1.

• Maximum extra video bitrate U = {ui,j ∈ [0, qM ], i ∈
U , j ∈ T }, where ui,j is the additional bitrate user i could
download before the end of slot j to increment the video
quality.
• Assigned resources for extra quality Q = {qi,j ∈ [0, 1], i ∈
U , j ∈ T }, where 0 ≤ qi,j ≤ 1−

∑
k∈U au,j is the fraction of

the available resources ri,j to be allocated for extra quality.
• Buffer state B′ = {b′i,j ∈ [0, bM ], i ∈ U , j ∈ T }, where

b′i,j+1 = [b′i,j + ai,jri,j − di,j ]bM0 (1)

is the buffer level of user i at the end of slot j + 1, bM is
the buffer size in bytes and [·]ba = min{max{·, a}, b} is a
bounding operator.
• Extra quality buffer state B′′ = {b′′i,j ∈ [0, b′′max], i ∈ U , j ∈
T }, where

b′′i,j+1 = [b′′i,j + qi,jri,j − ui,j ]
bM−b′i,j+1

0 (2)

is the buffered data to be used for extra quality. The total buffer
is B = B′ +B′′.
• Lateness L = {li,j ∈ [0, 1], i ∈ U , j ∈ T } is the fraction of

slot j for which no data was available to stream the minimum
video bitrate:

li,j =

{
[di,j − bi,j−1 − ai,jri,j ]0/di,j di,j > 0

0 otherwise
(3)

• Extra quality E = {ei,j ∈ [0, qM ], i ∈ U , j ∈ T }, where
ei,j is the maximum number of bytes that user i receives for
extra quality j,

ei,j = [qi,jri,j + bi,j−1]ui,j . (4)

We define the system average lateness λ, and total average
quality θ as:

λ =
∑
i∈U

∑
j∈T

li,j/(KT ). (5)

θ =
∑
i∈U

∑
j∈T

(ei,j + ai,jri,j)/T. (6)

Thus we can define our optimization problem as computing
two schedules A and Q the minimize lateness λ, and maximize
quality θ, given C, D, U , and bM as defined above. In this
paper we assign a higher priority to lateness minimization so
that under no circumstance the system is trading lateness for
quality. Consequently we formulate the optimization problem
as:

minimize
A,Q

Wλ− θ (7)

subject to: ai,j ≥ 0;
∑
k∈U

ak,j ≤ 1

qi,j ≥ 0;
∑
k∈U

qk,j ≤ 1−
∑
k∈U

ak,j

∀i ∈ U ; j ∈ T
Eqns. (1), (2), (3), (4), (5) and (6),

where Q and A are control variables, B′, B′′, L, E, λ and θ are
additional variables and R, D, U and bM are input parameters.
The objective function is a linear combination of Eqns. (3)
and (4) and the parameter W weights the two components. In
particular, the solver has to use resources to either decrease
the lateness or to increase the quality. Ideally, with W → ∞
the solution of the problem would never choose quality over
lateness, but in practice it is sufficient to have W � max{θ}.

In addition, since our objective function is a linear combi-
nation of piecewise linear equations, the overall optimization
problem is piecewise linear as well. Unfortunately, while the
formulation is quite compact, Eq. (1) that defines the evolution
of the buffer state increases the overall complexity of the
problem due to the bounding operator that limits the buffer
between 0 and bM in every slot.

III. RESOURCE ALLOCATION ALGORITHM

Our algorithm, Split, Sort & Swap (SS&S), is based on
two main phases: first a greedy algorithm is used to obtain
a feasible resource allocation (greedy phase), then the solution
is iteratively improved (swap phase). The main idea is to i)



compute the minimum lateness allocation and ii) maximize
quality as second priority. According to our formulation this
is equivalent to addressing the two quantities together since any
lateness increment is W times worse than a similar decrease
in quality. Also, this prevents mixing quality (video bitrate)
and lateness (time). Thus, in the following, we provide a
description of the algorithm operations to minimize lateness
and we only discuss how to adapt it for quality maximization.

The key ideas of the algorithm (from which we derived the
name) are:
• Split: Consider the smallest number of slots.
• Sort: Use capacity in descending order.
• Swap: Change allocations only if it improves the objective.

The overall SS&S is given in Algorithm 1, using the notation
from Section II and the following additional variables sf
and sl that identify the first and the last slot the algorithm
is considering at any given step. Variable sl is increased
whenever no more improvement to the objective function can
be obtained to satisfy the requirements up to slot sl. Variable
sf is increased if no improvement to the objective function can
be obtained by changing the allocation earlier than sf . Also,
we define x and xM as the current and the maximum allowed
numbers of iterations of the greedy phase; λ0 is the average
lateness computed at the previous optimization iteration and
δM is used to stop the greedy phase if the current improvement
is smaller than that.

Algorithm 1 Split, Sort & Swap (SS&S)
Input: R, D, bM .
Output: [A,B] = SS&S(R,D, bM )
sf = 1, sl = 1 // initial optimization window
ai,j = 0, bi,j = 0 ∀i ∈ U , j ∈ T
while sl ≤ T do

[A,B, sf , sl] = Greedy(R,D, sf , sl, bM , A,B)
end while
sf = 1; x = 0; λ0 = 0
while x < xM AND |λ− λ0| < δM do
x = x+ 1; λ0 = λ
[A,B, sf ] = Swap(R,D, bM , A,B, sf )

end while
return A,B

The following paragraphs review the algorithm’s mechanics
through a simple example, while its formal definition and the
complete pseudocode is given shortly after.

Let’s consider the following achievable rates R (compare
the topmost plot in Fig. 1), minimum video requirements D
and buffer size bM = 1:

R =

[
2 0 3 0
1 1 4 1

]
(8)

D =

[
1 1 1 1
1 1 1 1

]
(9)

We start with the greedy procedure, the allocation A and
lateness L of which are illustrated in the second and third
plots of Fig. 1 respectively.
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Fig. 1. Graphic example of simple SS&S operations: users’ achievable rates,
R are shown at the top, the allocation A and the lateness L after the greedy
phase are plotted in the second and third plots from the top respectively. While
the fourth and the fifth plot show the optimal A and L after the swap phase.
The improvements from G1 to O1 and from G2 to O2 involve a Type 1 and
a Type 2 swap respectively.

The first greedy allocation entails slot 1 only. Here the two
users may obtain up to r1,1 = 2 and r2,1 = 1 respectively. The
greedy procedure assigns a1,1 = d1,1/r1,1 = 1/2 to satisfy
slot 1 requirements. Then the remaining resources a2,1 = 1−
a1,1 = 1/2 are assigned to user 2. However, this is less than
needed and causes a buffer under-run l2,1 = d2,1 − a2,1r2,1 =
1/2. This under-run is unavoidable, due to the achievable rates
in slot 1 and it obtains the minimum total lateness in slot 1
as increasing the resource allocation to user 2 would cause a
larger lateness to user 1.

The greedy allocation in slot 2 is trivial for two reasons: slot
1 is fully allocated, thus no buffering is possible, and r1,2 = 0.
Thus, we obtain a1,2 = 0, a2,2 = 1, l1,2 = 1 and l2,2 = 0
respectively. We annotated these two first slots as G1 in the
figure and the total lateness so far is λ = l2,1 + l1,2 = 3/2.

The allocation is now complete until slot 2, since no other
greedy allocations can occur before and including slot 2, thus
the next optimization phase will have sf = sl = 3. We
annotated the following two slots (j = {3, 4}) as G2 in Fig. 1.
Again, the greedy operation starts by considering slot 3 alone
by sorting users according to their achievable rates. Thus, slot
3 requirements are satisfied by allocating a1,3 = 1/4 and
a2,3 = 1/3 and leaving 5/12 of the resources free.

Now the algorithm accounts for slot 4 requirements by
considering free resources both in slot 3 and slot 4 in order
of decreasing capacity. The following greedy allocations are
made: since r1,3 = 4 is the highest, a1,3 = a1,3 + d1,4/r1,3 =
1/4 + 1/4 = 1/2 of which 1/4 is used to fill the buffer
b1,3 = b1,2 + a1,3r1,3 − d1,3 = 1; the highest capacity for
user 2 is in slot 3 too, but here user 2 can only be assigned
a2,3 = 1/3+1/6 = 1/2 to buffer b2,3 = 1/2 and, since user 2



capacity in the last slot is r2,4 = 0, the greedy decision cannot
avoid some lateness l2,4 = d2,4 − b2,3 = 1/2.

The final greedy allocation is obtained with a total lateness
λ = 2 consisting of an unavoidable under-run in slot 1 for user
2, two under-runs for user 1 in slots 2 and 4 and all resources
in the last slot left unassigned.

In the swap phase, the algorithm considers those slots where
it was not possible to avoid some lateness by modifying the
greedy allocation obtained so far. In our example, the first
case to be addressed is user 1 in slot 2, where the algorithm
obtained a lateness of l1,2 = 1. If we do not consider user 2,
user 1 can fill the buffer in slot 1 to satisfy the requirements
of slot 2. However, this cause more lateness for user 2 in slot
1. In particular, if we swap a quantity δa of resources from
user 2 to user 1, we obtain that the total lateness varies of a
proportional quantity δλ = δa(r2,1 − r1,1) that is the sum of
the increase of lateness l2,1 = l2,1 + δar2,1 and the decrease
of l1,1 = l1,1 − δar1,1 due to the resource swap.

If r1,1 > r2,1, then δλ < 0 and the total lateness is decreas-
ing. However, δa is limited by the minimum among a2,1 = 1/2
the resources allocated to the users we are removing resources
from, (bM − b1,1)/r1,1 = 1/2 the maximum resources that
can be buffered by the receiving user and l1,2/r1,1 = 1/2
the lateness we are trying to reduce. Since δλ = −δa, the
maximum improvement is obtained for the maximum δa = 1/2
and the following optimal allocation a1,1 = 1, a1,2 = 0, that
allows user 1 to buffer b1,1 = 1 and avoid the under-run in slot
2 and increase the under-run for user 2 to l2,1 = 1. However,
the total lateness of these first two slots is λ = 1 only: δλ less
than that obtained by the greedy procedure. We annotate these
two slots j = {1, 2} as O1 in the figure.

The forth and the fifth plot in Fig. 1 show the optimal
allocation and associated lateness obtained after the swap
phase. We call Type 1 the swap occurring in the first two slots
from G1 to O1 and is characterized by replacing an under-run
with a smaller one earlier in the sequence.

Before addressing the buffer under-run in slot 4, we note that
in the two first slots all resources are given to the user with
the highest achievable rate, thus further resource swapping can
only make the total lateness worse. Also, applying the type 1
method to this is not worthy since r1,3 < r2,3 and will lead to
an increased lateness l2,3 > l1,4. However, slot 4 has unused
resources and it may be possible to use them to improve the
earlier allocations.

In fact, since slot 4 requirements for user 2 are satisfied with
buffered data, it is possible avoid buffering for user 2 and,
instead, use the free resources in the last slot to satisfy d2,4,
while the remaining resources in slot 3 can be buffered for user
1 to satisfy d1,4. More formally, we can swap a quantity of
resource δa from user 2 to 1, which will cause a proportional
lateness variation δλ = δa(r2,3 − r1,3) and we can recover
δar2,3 by allocating a2,4 = δar2,3/r2,4.

Similar to a Type 1 swap, δa is limited by the mini-
mum among a2,3 = 1/2, (bM − b1,3)/r1,3 = 1/3 and
l1,4/r1,3 = 1/3 and, in addition, by the free resources in slot
4 (1 −

∑
i∈U ai,4)/r1,3 = 1/3. Thus the optimal allocation

becomes a1,3 = 2/3, a2,3 = 1/3, and a2,4 = 2/3. These last
two slots are annotated as G2 in the figure and we call Type

2 the resource swap between G2 and O2, which is defined by
the recovery of an under-run by modifying earlier buffer state
with the usage of later free resources.

More formally the greedy and the swap phases are given in
Algorithm 2 and Algorithm 4 respectively. In Algorithm 2 we
use the indicator function I(x) = 1 if x > 0 and I(x) = 0
otherwise. Also, while the greedy phase is deterministic and
performs at most O((KT )2) iterations, the swap phase im-
proves the objective functions iteratively.

For what concerns the greedy phase, Algorithm 2 checks
whether further resources can be assigned between slot sf
and sl by computing Â, which elements âi,j represent the
maximum usable rate for user i in slot j accounting for
available resources in the slot (1−

∑
k∈U ak,j), future require-

ments to be satisfied (
∑sl
k=j di,k) and available buffer space

(bM −maxk∈[j,sl]{bi,k}+ di,j) as follows:

âi,j = min
{

(1−
∑
k∈U

ak,j)ri,j ,

sl∑
k=j

di,k,

bM − max
k∈[j,sl]

{bi,k}+ di,j

}
∀ i ∈ U , sf ≤ j ≤ sl. (10)

Algorithm 2 Greedy phase
Input: R,D, sf , sl, bM , A,B.
Output: [A,B, sf , sl] = Greedy(R,D, sf , sl, bM , A,B)

compute Â as per Eq. (10) // feasible resource usage
while

∑
i∈U

∑sl
j=sf

> 0 do
k, l = argmax

i,j
ri,jI(âi,j) // choose best user and slot

ak,l = ak,l + âk,l/rk,l // increase allocation
bk,m = bk,m + âk,l ∀ l ≤ m < sl // adjust buffer

end while
sl = sl + 1
sf = NewStart(A,B,R, bM , sf , sl)
return A,B, sf , sl

Then, among all users and slots to whom resources can be
assigned (âi,j > 0) the user k with the highest rate in slot l is
assigned further resources, so that ak,l = ak,l + âk,l/rk,l. One
greedy phase step continues until either no new resources can
be assigned or all requirements up to slot sl are satisfied.

Finally, sl is increased and the NewStart procedure (see
Algorithm 3) updates sf if needed. In particular, a slot sf is
completed if it is not possible to swap resources between users
either because that would cause a buffer overflow or because
that would degrade the objective function.

The formal definition of the swap phase requires first to
generalize the two type of resource swapping that, in turn,
requires to identify the best possible swap which is improving
the objective function the most by increasing the resource
allocation the least.

According to type 1 swap, the best swap is the one obtaining
the highest δλ. To this extent, we first define δλ,(i,j), and
δa,(i,j) as the best lateness improvement and the maximum



Algorithm 3 New Start
Input: A,B,R, bM , sf , sl.
Output: sf = NewStart(A,B,R, bM , sf , sl)

for j ∈ [sf , sl] do
if min{bM −maxl∈[j,sl] bi,l,

∑
k∈U|rk,j<ri,j

ak,j} = 0
∀ j ∈ U then

sf = sf + 1
else

return sf
end if

end for
return sf

exchangeable resources to move an under-run in (i, j) to ni,j ,
where

ni,j = (m,n) = argmax
l∈U,k<j

δa,(i,j)(ri,k − rl,k) + δλ,(l,k) (11)

δλ,(i,j) = δa,(i,j)(ri,n − rm,n)δλ,(m,n) (12)

δa,(i,j) = min{am,n, (bM−bi,n→j)/ri,n, δλ,(i,j)/ri,n}, (13)

and bi,n→j = maxk∈[n,j]{bi,k} is the maximum buffer state
for user i from slot n to j. Computing Eqns. (11), (12) and (13)
is recursive as chained swapping is also considered and can
be computed from j = sf to sl after initializing ni,j = (i, j),
δλ,(i,j) = 0 and δa,(i,j) = 1.

The best type 1 swap (i∗, j∗) among all the possible (l, k)
(there is an under-run (ll,k > 0 to be solved and resources can
be swapped δa,(l,k) > 0) is

(i∗, j∗) = argmax
(l,k) s.t. (ll,k>0∧δa,(l,k)>0)

δλ,(l,k) (14)

and can be resolved by following the chain starting from
(i∗, j∗) which moves the under-run to (m,n) = ni∗,j∗ by
swapping δa,(i∗,j∗) resources from user m to user i∗ in slot n.
Then, (i∗, j∗) = (m,n) and the next chained swap is resolved
until ni∗,j∗ = (i∗, j∗), which means no more swaps can be
done to reduce an under-run in the last (i∗, j∗).

Conversely, type 2 swaps are defined as those that reduce the
total lateness by by modifying earlier buffer states exploiting
later free resources. The best type 2 swap is the one obtaining
the highest product between exchengeable resources and late-
ness decrease δaδλ. To this extent, we redefine δλ,(i,j), δa,(i,j)
and ni,j , but in this case (m,n) = ni,j is where new resources
are allocated to compensate for the swap from user m to i in
slot j:

ni,j = (m,n) = argmax
l∈U,k>j

δa,(l,k)δλ,(l,k) (15)

δλ,(i,j) = δλ,(m,n) (16)

δa,(i,j) = min{δa,(m,n)rm,n/rm,j , am,j , bm,n→j)/rl,n} (17)

where bm,n→j = mink∈[n,j−1]{bm,k} is the minimum buffer
level for user m from slot n to j − 1 and ensures that it is
possible to reduce the buffer allocation to save resources in slot

j. Computing Eqns. (15), (16) and (17) is recursive as chained
swapping is also considered and can be computed by going
backwards from j = sl to sf after initializing ni,j = (i, j),
δλ,(i,j) = I(1−

∑
k∈U ak,j)ri,j and δa,(i,j) = 1.

The best type 2 swap (i∗, j∗) among all the possible (l, k)
(under-run in ll,k > 0 and δa,(l,k) > 0) is

(i∗, j∗) = argmax
(l,k) s.t. (ll,k>0∧δa,(l,k)>0)

δa,(l,k)δλ,(l,k) (18)

and can be resolved by allocating new resources in δa,(i∗,j∗)
and following the chain moving free resources to (m,n) =
ni∗,j∗ by swapping δa,(i∗,j∗) resources from user i to user m
in slot n. Then, (i∗, j∗) = (m,n) and the next chained swap
is resolved until ni∗,j∗ = (i∗, j∗), where the under-run in the
last (i∗, j∗) is decreased.

Finally, Algorithm 4 lists the steps of the swap phase.
Basically, each iteration checks whether a Type 1 or a Type 2
swap can be done and, in the positive case, it recomputes the
allocation. Type 2 swaps are prioritized over Type 1, since it
is more efficient to use remaining resources first and reducing
lateness later.

Algorithm 4 Swap phase
Input: R,D, sf , bM , A,B.
Output: [A,B, sf ] = Swap(R,D, sf , bM , A,B)

if Type 2 then
(l, k) = (i∗, j∗) as per Eq. (18)
δa = min{δa,(l,k), ll,k/rl,k}
while nl,k 6= (l, k) do

(m,n) = nk,l
al,k = al,k + δa
am,k = am,k − δa
δa = δa rm,k/rm,n
(l, k) = (m,n)

end while
al,k = al,k + δa
Recompute B as per Eqns. (1)

else if Type 1 then
(l, k) = (i∗, j∗) as per Eq. (14)
δa = min{δa,(l,k), ll,k/rl,n}
while nl,k 6= (l, k) do
al,n = al,n + δa
am,n = am,n − δa
(l, k) = (m,n) and (m,n) = nl,k
δa = δarm,n/rm,k

end while
recompute B as per Eqns. (1)

end if
sf = NewStart(A,B,R, bM , sf , T )
return A,B, sf

In order to use the SS&S algorithm to solve the quality
maximization problem, we can simply observe that the re-
sources allocated for extra quality Q cannot modify those
assigned to minimum requirements A, and the buffered data
for extra quality must account for data already buffered
for minimum requirements B′′ < bM − B′. Thus running
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[Q,B′′] = SS&S(R,U, bM − B′) will provide the desired
solution.

IV. SIMULATION RESULTS

This section evaluates the performance of SS&S and its
result after x iterations (SS&S(x)) against the optimal solution
(Optimum) and the unoptimized performance (Baseline). The
baseline is computed assuming proportionally fair scheduling
is allocating resources [16] by allowing each users 1/K-th of
the time. While, the optimal performance is obtained as the
solution of the optimization problem in Eq. (7) by means of
standard solvers, such as GUROBI [15].

Each simulation is run over traces generated according to
the LTE model in [16] assuming random cell deployment with
average cell distance of 500 meters, users moving according to
a random waypoint mobility model with an average speed of
10 meters per second, 10 active users are considered in each
simulation and the video is 180 seconds long. In each trace the
capacity oscillates according the the distance from the users to
the base station and has 4 maxima, which are approximately
50 seconds apart from each other.

In each simulation, all traces are normalized so that the
average capacity is C = 1 and, thus, equal for all users. In
all simulation the buffer size is set to last at least 50 seconds
at the maximum quality, so that a full buffer allow a user to
playing the video without interruptions even if no download is

made between two capacity maxima. Finally, each parameter
combination is averaged over 50 runs and error bars are plotted
for this averages at 95% confidence.

In order to systematically study various rate requirements
for video streaming, we define two additional parameters: α ∈
(0,∞) and β ∈ [0, 1]. The parameter α = K(di,j + ui,j)/C
represents the maximum video bitrate requested by all users
for every user i and slot j. Even though minimum and
maximum requirements are assumed constant for the whole
video and equal across the users, this only simplifies the
numerical study and does not limit for the algorithm. Also,
α = 1 means that the demand is equal to the average offer.
Instead, β = di,j/(di,j +ui,j) represents the ratio between the
minimum and the maximum video bitrate. Thus, 0 < β < 1
means that the video quality may be as low as β in order to
stream the video without interruptions.

Fig. 2 shows the first set of plots, that illustrate, from the
left to the right, the average lateness λ, the average total video
quality θ normalized over the average capacity and the gap
between the results obtained by SS&S and the optimal.

The first plot is obtained with α ∈ [0.25, 10] in logarithmic
steps and β = 1. This setup is meant to study λ as a function
of the ratio between demand and offer, thus no extra quality is
considered. The results obtained by SS&S and the optimal are
plotted as black solid and blue dash-dotted lines respectively
and they are very close to each other confirming that SS&S



obtains almost optimal performance. SS&S(x) performance
are plotted for x ∈ [1, 1000] as dotted black lines and they are
increasingly close to the optimal performance with increasing
x. Finally, the baseline performance is shown as a red dashed
line. Notably, the baseline performance is always worse than
the others and it is obtaining an average lateness more than
twice (2.45) as long as SS&S when α = 1.

The second plot, in the center, is obtained for β = 0 with
everything else unchanged. This set of experiments is meant
to study the maximum average bitrate achievable varying α.
Again SS&S reaches almost optimal performance and both
solutions outperform the baseline by up to 60% and, starting
from α ≤ 1.5 of as much as 25%. As in the previous graph,
increasing the number of iterations reduces the distance from
SS&S(x) to the optimum. Notably, both here and in the
previous graph, a larger number of iterations is needed for
α ∈ [1, 3]: in fact, out of this region a completely greedy
solution is already good enough as the minimium requirements
are either very low (α < 1) and they can be greedily allocated
to all the users or very high (α > 3) so that only the user with
the highest capacity is being allocated.

The third plot of Fig. 2 shows the difference between
the lateness obtained by SS&S(x) and the optimal ∆λ =
λSS&S(x) − λOpt varying x ∈ {1, 10, 100, 1000}. Again the
gap is larger for fewer iterations and in the region 1 < α < 3.
Also, for x >= 1000 are sufficient to achieve the best
performance of SS&S, which, in turn, are very close to the
optimal (∆λ < 5 · 10−3). Finally, even with a single iteration
the gap is smaller than 5% (∆λ ≈ 0.043).

The second series of plot in Fig. 3 represents from left to
right: contour plots of the average lateness, contour plots of
the total average quality and the trade off between lateness
and quality varying both α ∈ [1, 10] and β ∈ [0.1, 0.9]. In the
first two plots a black dashed contour is plotted to mark the
boundary between the region where minimum requirements
for an uninterrupted streaming are lower (bottom-left part) or
larger (upper-right part) than the average capacity.

The lateness results (left) are quite intuitive as below the
dashed border SS&S mostly streams the video uninterrupted
at the desired minimum quality. However, crossing this border
causes an increasingly higher lateness up to 20% of the
video duration. Conversely, the quality contours (center) are
slightly more complex: in fact the quality increases both above
and below the dashed border. The quality increase when the
resources are scarcer (top-right part) is justified by the fact that
the system is trading lateness for quality allocating only users
that can obtain higher quality. Conversely, the quality increase
in the lower-left part of the figure is obtained without almost no
lateness (compare to the left figure): in fact, in this region the
minimum requirements di,j are small compared to the average
capacity, thus allocation computed by SS&S allow all the users
to receive an uninterrupted stream at a quality which is at least
equal to αβC/K.

The trade off between lateness and quality is clearly illus-
trated in the right plot if Fig. 3, where λ and θ are plotted
on the x and y axes respectively. The different curves are
plotted for different β and each curve is obtained for varying
α. Notably, the system is bound between β = 0.1 on the

top-left part and β = 0.9 on the right. All the curves are
quite close when αβ = 1. This plot can be used to estimate
the expected system performance when adopting SS&S: for
instance, in a system where the minimum requirements are
20% of the maximum quality (e.g.: 400 kbps and 2 Mbps) the
second curve from the top can be used to decide how many
users to allow in the system as a function of the desired average
video bitrate; as an example, if C = 20 Mbps and the desired
average video bitrate should not be lower than 1.5 Mbps, the
user number should be K ≈ 16, obtaining an average lateness
lower than λ < 10−4; more users can be traded for lower
average quality, lower minimum quality or higher lateness.

V. CONCLUSIONS

In this paper we addressed the optimization problem of
network resource allocation for mobile video streaming with
minimum lateness and maximum average quality. We de-
scribed the optimization problem as a piecewise linear program
and we developed Split, Sort & Swap, a heuristic algorithm
achieving close to optimal performance.

The algorithm features the following interesting characteris-
tics. It solves the problem by first providing minimum lateness
and, then, uses the remaining resources for extra quality. Thus
the video playback is delivered with minimal interruptions.
Being anticipative, this solution allows to preserve a smooth
playback in situations of low wireless capacity by buffering
video segments at the minimum quality, while improving the
quality if the capacity is predicted to be sufficient. Finally,
the algorithm can be stopped after any number of iterations,
while always returning a feasible solution that represents an
improvement to the previous iteration.

Our simulation results show that the result obtained by
SS&S is very close to the optimal solution and we used the
algorithm performance to draw some preliminary consideration
about the performance of a system adopting SS&S for resource
allocation. As a future work, we will study the algorithm with
imperfect prediction in realistic environments.
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