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Preface

This work agrees to the guidelines of the A-Modality, described below.

A-Modality Original research work which solves a research open problem in a knowledge area
related with Master’s thematic.

Social Network Analysis is a wide interdisciplinar research field which combines both Social
and Natural Science. In the last years, because of the emergence of Online Social Networks
(OSN’s; e.g.: Facebook, Twitter, etc.), new data is generated every minute over the whole
world. This large flow of continuously arriving data opens new interesting problems. Dealing
with the dynamics and time effects of these huge networks is a challenge for scientists.
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Abstract

In this work, propagation dynamics on social networks are studied in order to identify
the most influential users. For this purpose, diffusion data has been collected during 4 weeks
from a microblogging OSN (online social network) called Tumblr1. Then, the propagation
graph has been built and studied using the first 2 weeks data (period T1). Subsequently,
this graph has been used to predict the influencers during the last 2 weeks (period T2). A
ranking of influential nodes is obtained for T2, set as the ground truth. The aim is to predict
this ranking using the data from T1. Based on the average spread of users’ posts, rankings
obtained with several techniques are tested and compared. These techniques include classical
centrality measures used in the literature, the T1 ranking itself, and new alternatives based
on effective degree using local (network) information. Whilst all methods perform similarly
when considering whole global ranking, differences among them appear when ranking the
top influencers. For those, in general, the methods proposed here outperform the classical
centrality measures.

1 Introduction

In the last years, epidemics and information spreading in complex networks have been widely
studied from a social-network point of view. Studying the role of some important nodes in the
spreading dynamics may be useful for understanding and controlling these processes. Whilst
the propagation of epidemic diseases is studied for minimizing the impact of such diseases (e.g.,
vaccinating/removing central nodes) [1], rumor spreading processes aim at maximizing the prop-
agation of such rumors (news, pieces of information, opinions) [13] or minimizing them (worms,
viruses) [19].

On microblogging OSNs (online social networks) the dynamics of the information spreading
work as follows. Users (the network nodes) can publish content (text, media, etc.); this action
is called posting and the content is a post. Also, users can subscribe to other users’ content, by
following these users, which is an unilateral action (e.g., user1 follows user2 without any action
or acknoledgment from user2 ). Thus, every time a user posts something, it is broadcasted to all
his/her followers. They can decide to re-post such content, which will be broadcasted to their
followers as well. This way, cascade reactions might be generated.

Thus, classically, a directed graph generated from the users’ follower list is studied, in order
to detect “influencers.” These are nodes that have a good connectivity and/or good position
within the network to generate such large information cascades.

1All data has been collected using the oficial API provided by Tumblr Inc.

1



In this line of research, the first problem to be solved is how to define and measure the
influence of a user. Some authors have suggested defining influence for a user u as the probability
of finding a re-post, during a period of time, which was originally posted by u, normalized by
the total amount of posts (and re-posts) during such period [7]. However, this may be criticized,
as it is not using the network information. Then, more recent studies have proposed to use the
average cascade size that users create over a period of time [2].

Second, users’ influence has to be sorted somehow yielding a ranking. Multiple studies in the
literature have applied network centrality or link analysis metrics [4, 9, 21] to rank the nodes by
their relevance. However, none of them combines these techniques with actual diffusion data.
This is important because diffusion data may unveil active areas in the network, while reducing
the relevance of the node degrees (followers). This is important because the amount of followers
is not a reliable influence metric [7]. Thereby, the amount of active followers a user has is more
relevant than the total amount of them. Using number of followers only may distort the results.
Moreover, when dealing with large graphs, the use of classical centrallity metrics may have a
high computational cost and thus, other methods have been recently proposed. For instance,
they randomly choose potencial high-degree central nodes [10], but for other purposes.

As a result of all these studies, which characterize the spreading dynamics on OSNs, new
models have arised which are able to capture the network effects in short-time periods with
reasonable good results [12, 18].

1.1 Motivation

Since most of recent studies are focused on Twitter as the reference OSN, it is desireable to
contrast the results obtained with other OSNs in order to generalize the conclusions. If the
results are not biased by Twitter data’s nature, similar results should be obtained in any OSN.
Thus, the microblogging OSN Tumblr [8] has been chosen in this work for this purpose. Tumblr
has the nice property that, unlike in Twitter, propagation cascades can be exactly obtained. As
a drawback, we cannot get the whole followers lists, but this should not be a problem according
to the follower fallacy2 [7], as long as we can get the active followers.

Relying on actual diffusion data is a key factor to verify the contribution of the network dy-
namics (user-to-user interactions) on the influence rankings, as well to justify their use. We aim
in this paper to ranking the nodes on a network using past diffusion data, and check our rank-
ing with future diffusion data. The proposed ranking algorithms should be easily computable,
scalable, and must use both diffusion and network information, if possible. Further, we will
try to draw conclusions for better understanding OSN dynamics in order to improve existent
propagation models.

1.2 Contributions

In this paper we make the following contributions; (i) We have used a real diffusion dataset for
our experiments. The evaluation of real data has a major relavance for supporting theoretical
results which rely on synthetic graphs and/or simulations. (ii) We have built a diffusion network
using actual data. In this network arc weights are computed as the re-post rate. (iii) We have
proposed new techniques for ranking nodes by influence in a diffusion network. (iv) Actual
diffusion data has been used for evaluating the prediction capacity of different tehcniques. This
capacity has been measured by having the techniques generating ranking of nodes by influence.
The techniques include:

2It has been believed that the more followers you have, the more influent you are, which is proved to be a
fallacy.
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• Past diffusion data. The average propagation of diffusion trees are estimated and these
tree sizes define a ranking.

• Classical centrality metrics, each of which provides a ranking.

• The techniques proposed here.

(v) With one exception, the techniques proposed here for ranking nodes have outperformed the
others. (vi) We have verified that some of the properties observed in Twitter happen in Tumblr
as well, such as the oscillation of influencers over time or the re-blog delay distribution.

1.3 Structure

In Section 2 we describe the different influence metrics used in the literature, and discuss their
use and relevance, providing alternative solutions. The Tumblr dataset description, retrieving
method, and details can be found in Section 3. The results and comparison among the different
influence rankings are shown in Section 4. Finally, we present our conclusions and future work
in Section 5.

2 Influence Metrics

We are going to define the different rankings that will be used in this work. First of all, we are
going to define any network as a graph G(V,E), where V is the set of nodes in the network and
E ⊆ V × V the arc set. We are not considering loops in this graph definition (i.e.: @(u, v) ∈ E
such that u = v). We assume weighted graphs where each arc has associated a weight defined
by a function weight : E −→ [0, 1]. Without loss of generality, any unweighted directed graph
can be seen as a weighted graph where all its arc weight equally. Moreover, in some cases,
uniform-weighted graph (a graph with its arcs having the same weight) might be equivalent to
an unweighted graph, using the former definition.

We have to do an important observation with the graph arc definition meaning. The arc
direction for any arc (v, w) ∈ E means that the arc goes from v to w because the information
propagation goes from v to w. This is different from previous works where the arc would go
from w to v because w is following v, even when the information goes in the opposite direction.
Thus, we define the following subsets for describing the vertex neighbourhood.

Nin(v) = {u ∈ V : ∃(u, v) ∈ E}, and Nout(v) = {u ∈ V : ∃(v, u) ∈ E}. (1)

Recalling that (u, v) 6= (v, u), and u 6= v (no loops), we say that Nin(v) is the set of nodes that
v is following (v-followees), and Nout(v) is the set of nodes that are following v (v-followers).

A ranking will be a vertex permutation supported by a rank function f defined as any
function f : V × G(V ) −→ [0,O(|V |)], where V is the set of nodes in the network, G(V ) the set
of graphs with vertex set V , and O(|V |) means a linear value with the number of vertices. Note
that applying this function over the vertex set V gives a partially ordered set which allows to
sort the nodes by its ranking value (numeric). Although the metrics we will present here are not
explicitly using the graph as a funtion argument they will use it somehow through the adjacency
matrix, the short-paths, local connectivity, etc.

2.1 Centrality Metrics

Next, we are going to describe each centrality metric used in this work, classified by its type as
follows. Unless we say otherwise, this metrics has a weighted version which will be used in our
tests.
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Degree The most basic centrality metric for any vertex v is the degree κ(v) defined as the
number of arcs leaving v, i.e. |Nout(v)|. Since we are not able to obtain the actual followers lists
in Tumblr, our degree will be computed considering those followers that have showed activity
(see Section 3.2). This metric has no weighted version.

Betweenness This metric quantifies how many times a node v appears in short-paths between
pairs of nodes (u,w) ⊆ V × V . It is defined in [16] as follows. For any vertex v, it is defined as

Bv =
∑

u,w∈V,u6=w

σ(u, v, w)

σ(u,w)
, (2)

where σ(u, v, w) gives the number of shortest-paths between u and w that go through v, and
σ(u,w) gives the total amount of shortest-paths between u and w. The weighted version is
obtained by using Dijkstra’s distance algorithm when computing the shortest paths [17]. The
distance between two connected vertices u, v is given by the weight inverse 1

weight((u,v)) .

Closeness This metric [5] is defined as follows.

Cv =
|V |∑

w∈V,w 6=v
dvw

. (3)

It considers the shortest distance a vertex has to each other vertex in the network. The longer
the distance, the higher the denominator. The weighted version is obtained by using Dijkstra’s
distance algorithm when computing the shortest paths [17], as well as in betweenness. Thus, the
higher the weight, the shortest the distance.

µ-PCI This metric is proposed in [4] for detecting influential spreaders in complex networks.
It is a metric defined for unweighted graphs, which has been proposed for outperforming existent
metrics such degree and k-shell decomposition [14] and it is defined as follows. A vertex v is
assigned a number k such that no more than µk nodes in the µ-hop neighbourhood of v has
degree greather or equal to k, where the µ-hop neighbourhood is the subgraph centered in the
vertex v that contains all the vertices (and their arcs) that are reachable using at most µ arcs
from v. As in [4], we will use µ = 1. This metric is expected to outperform the ranking generated
by the degree as claimed, and will be a reference for other metrics that rely on unweighted graphs.

2.2 Link Analysis Metrics

PageRank Google PageRank is a metric used for ranking documents in hyperlink networks [6].
It measures the probability of reaching a node in the network, if we start from any other node
following a random travel through the network. It is computed as the vector π = πG, where G
is the Google matrix defined as

G = α(P +
aeT

N
) +

(1− α)
N

eeT , (4)

where α is the probability of randomly jumping to any other node in the network at any moment
(usually set to 0.85), a ∈ [0, 1]N is called dangling value vector, e ∈ [1]N , and P (i, j) = Aij∑

k Aik
,

where Aij are the elements of the adjacency matrix3. The weighted version is computed using
the adjacency matrix of the weighted graph [20].

3Since our network arcs has the flow information direction, for computing PageRank, we have used the
transposed adjacency matrix AT for changing the arcs direction in this particular case.
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HITS The HITS algorithm gives two values for each network vertex (authority and hub
scores) [15]. It is defined as two vectors, x and y, such that the authority scores x can be de-
termined from the hub scores x = AT y and the hub scores y from the authority scores y = Ax.
Summing up, they are the singular vectors

x = ATAx and y = AAT y. (5)

Unlike pageRank, it is not necessary transpose the adjacency matrix A in this case (see the
footnote), but then authority and hub scores will be exchanged in comparison with the follower
direction arc networks. For this reason, we expect hub scores outperform the authorithy scores
when detecting influent nodes. The weighted version is computed using the adjacency matrix of
the weighted graph [20], as well as in PageRank.

2.3 New Approaches

In view of previous work results, we realize that the vertex degree might not capture the actual
network dynamics (activity). Thus, it would be desirable replacing the actual vertex degree (out-
degree, i.e.: the number of followers) by a more meaningful metric. Moreover, in this particular
case we are not sure the actual degree values, since Tumblr does not allow to obtain the followers
lists. For this purpose, we are going to define the effective degree similarly as vertex strength is
defined [3].

Definition 1 The effective degree of a vertex v is defined as κ̂v =
∑

w∈Nout (v)

weight((v, w)),

where Nout(v) ⊆ E is the set of arcs that leave v. Note that κ̂ ∈ [0, κ]. In Section 3.2 it is
explained how weights are computed from difussion data and it how they measure the activity
among pair of users. Recall that for unweighted graphs, weight function returns 1 and the
definition is equivalent to degree. The effective degree might be a metric by itself, and actually,
we will test it in our performance evaluation. However, we are looking for a metric which takes
the network into account. Then, we define the following metric.

Definition 2 The 1-hop average effective degree is defined as

f̃(v) = κ̂v

∑
w∈Nout (v)

κ̂w

κ(v)
(6)

The second term is the average of the out-neighbours effective degree. Intuitively, we are aver-
aging the effective degree for the 1-hop neighbourhood and it might be generalized for a µ-hop
neihbourhood. Nevertheless, the degree term still appears.

Ego Additive Effective Degree This metric is not degree dependent and just use its effective
degree and his followees’ (ego network). It is defined for each vertex as follows.

f(v) = f̃(v)κ(v) = κ̂v
∑

w∈Nout (v)

κ̂w (7)

So, multiplying the 1-hop average effective degree of a vertex by its actual degree yields this
measure.
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3 Data Set

The data set we have used for our experiments is described in this section. Our first step is to
select the portion of the social network we are going to work with. The next step is to collect
all the difussion activity our network generated during the period of time we are going to study
(4 weeks).

3.1 Selecting our sub-Network

As suggested in [7] it is interesting, but not necessary, to study the influence of users that share
content related with the same topic. In this line, we have tried to get users which are related
through common interests. Besides, as the same study claims, some users try to get popularity
during some key events, something we will take into account for the results.

In order to capture all these features, we have selected a famous sporting event, the 2014
UEFA Champions League Final. We have called the time of the event tev , and we define two
periods. The period T1 = [tev −2 weeks, tev ) as the past, and the period T2 = [tev , tev +2 weeks)
as the future. Additionally, we will define T = T1 ∪ T2 as the whole observed period. Then,
using the Tumblr API4 feature of looking for tagged content, we retrieve all posts tagged with
“champions-league” during T . That gives us a total of 872 different users who generated content
(posts) related to this topic. These are the users we are going to rank. Next, using the Tumblr
API as well, we obtained all the propagation cascades (reblog/re-post cascades) for each single
post, and we aggregated all the cascades, yielding the network to study. Note that in this process,
we are discovering new nodes at each cascade flow, aside from the initial 872. In this network each
user on the cascades is a node (set V ), and the information cascade flow among this users (the
re-posts) determine the sense and direction of the arcs (set E). Our network is a graph of 17,756
vertices and 205,011 relationships (14% of reciprocity, i.e., nodes linked bi-directionally), which
determines a out-degree’s power-law exponent of 2. This network comprises a large connected
component (98.1% of the vertices), singletons (1.2%) and the remaining vertices are spreaded in
smaller components. Further information about general Tumblr stats can be found in [8], where
it is compared with general stats from other OSNs as well.

3.2 Obtaining a Weighted Network from Diffusion Data

The last step is obtaining all the local activity each node had during T1. The local activity of a
node is defined for each out-arc. For any arc (v, w) ∈ E, its weight((v, w)) is computed as

weight((v, w)) =
#re-postsT1,τvw

#postsT
′
1
v

⋃ ∑
u∈Nin (v)

#re-postsT
′
1
uv

, (8)

where #re-postsT1,τvw is the number of re-posts the vertex w does of content published by v

during T1 with a delay of at most τ (analogous for #re-postsT
′
1
uv, but without any τ constraint),

and #postsT
′
1
v is the number of posts that v published by itself. Simplifying T1 = [ti, tf ),

we have defined T ′
1 = [ti, tf − τ) used in the denominator. Thus, all posts have the same

timeout τ to consider its re-posts, which is fair along all nodes. Note that, since T ′
1 ⊆ T1 then

weight((v, w)) ∈ [0, 1]. Figure 1 shows that 93% of the reblogs occur during the first day and
additionally, at Figure 2 it is shown that actually 82% of the reblogs occur during the first 7

4Application Programming Interface, it is a set of routines, protocols, and tools for building software applica-
tions.
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hours (it is summarized in Table 1). Hence, we have chose τ = 7 hours. This results are similar
to those found in Twitter [11]. Thus, we assign the weights to each network arc in T1 as the
reblog rate for each post which was posted in [tev−2 weeks, tev−7 hours). We show the obtained
weight distribution in Figure 3, where we can observe a non-uniform distribution.
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Fig. 1: Reblog delay in days (y log-scale)
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Fig. 2: Reblog delay in hours (y log-scale)

Days Cumulative Hours Cumulative
1 93% 1 56%
2 96% 2 69%
3 97% 3 73%
4 97% 4 77%
5 98% 5 79%
6 98% 6 81%
7 99% 7 82%

Table 1: Cumulative reblog percentages.
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Fig. 3: Weight distribution for τ = 7 hours

3.3 Obtaining the Ground Truth Ranking

We are going to consider the future diffusion data for setting our ground truth as follows. For
each vertex v, it is assigned the average cascade size of each post (not re-post) it published
during [tev , tev + 2 weeks − 7 hours). Once we have computed the average cascade size for each
vertex, they are sorted by this number yielding a ranking. Note that, in the same way, we can
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compute the ranking in T1 and it could be considered as a metric. Actually, we have considered
the T1 ranking as a reference metric, our benchmark. Since every metric will use the weighted
graph with weights computed using T1 diffusion data, we could think this T1 ranking should not
be outperformed. Figure 4 shows the T1 ranking performance over the T2 ranking. We are using
a measure called recall which is widely used in information retrieval. We are going to define it
as follows.

top-m recall =
|top-m nodes(refRank)

⋂
top-m nodes(f)|

m
, (9)

where refRank is the reference ranking (the T2 ranking) and f is the rank to evaluate (the T1
ranking). This measure is a rate defined as the first m common elements in both rankings
over the maximum common possible (m). Then, in Figure 4 we can observe the recall of the
ranking T1 when predicting the ranking T2. Note that the top-1 ranking has 0% recall (first
dot), the top-5 has 40% and from the top-10 onwards the recall goes between 40% and 60% while
increasing the top users to be predicted. We are not showing further from top 50% because it
does not provide additional relevant information.
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0.
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0.
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%top
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Fig. 4: T1 ranking performance.

As shown in Figure 5 there is a peak of activity (just after tev , which is vertically dotted)
which might bias the results of the T2 ranking (ground truth). In order to check the relevance
of this activity peak we compute the ranking for T (whole period) and use T1 and T2 rankings
(recall that T1 ⊂ T and T2 ⊂ T ) for obtaining how much information each ranking gives (see
Figure 6). Since we see that the T2 ranking outperforms the T1 ranking, we might think the
information peak after tev which is used in the T2 ranking could be adding noise for the T1
ranking. In oder to check this phenomenon, we take the T1 period, and split it in T ′

1 and T ′
2

periods (of same length). Again, we compute the rankings for this 2 periods and compare them
with the T1 ranking. We do it for different length periods, and also for the T2 period but avoiding
the activity peak. The results are very similar to the first one in Figure 6 that compares T1 and
T2 on T (see an example in Figure 7). This seems to imply that about half of the most influential
users are oscillating over time, as in the case of the 2nd most influential user in T2, had just 1
post during T1 and no re-blogs. This fact agrees with [7] where is observed that maintaining
influence requires personal effort. Hence, the observed activity peak could be just highlighting
this phenomenon.
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4 Performance Evaluation

The ranking error for each proposed metric is shown in this section. Global and partial ranking
errors are important to determine the performance of a ranking. We have already tested those
metrics which have a weighted version with their unweighted versions in order to check the
relevance of adding the diffusion data (weights) to the network. The result is that the weighted
versions outperform those which are unweighted (critically in some cases). Hence, we are just
showing the weighted versions of this metrics.

4.1 Global Ranking Performance

For measuring the global ranking we define the following function.

absErr =

N∑
i=1

|refRanki − pos(f(refRanki))|

N
, (10)

where refRank is the reference ranking (the T2 ranking), f is the metric function, and pos gives
the position of the ranked vertex. Figure 8 shows the distribution of each summatory term of
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absErr for each metric.
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Fig. 8: Global Absolute Error for each rank-
ing.

Metric Spearman’s ρ absErr

Degree 0.1324 248.82
Betweenness 0.1346 266.42
Closeness 0.0935 245.43
µ-PCI 0.1104 246.32
PageRank 0.0935 251.03
HITS.auth 0.1004 267.33
HITS.hub 0.1584 240.87
Effective Degree 0.1332 236.10
EgoAED 0.1515 234.84
T1 0.0891 247.89

Table 2: Ranking’s correlation and error.

As can be seen in Figure 8, there is no big difference among the metrics considering this
error measure. Moreover, we show in Table 2 both the Spearman’s rank correlation coefficient
(ρ) and absErr for each metric, using the T2 ranking as the reference one. On the one hand,
we have highlighted the metrics with higher ρ, which means a high ranking correlation. On the
other hand, we highlight the metrics with lower absolute ranking error. However, it is observable
that all metrics have similar performance for the global ranking, with no big differences among
them.

4.2 Partial Ranking Performance

The next step is considering the top ranking and study the evolution of such ranking when we
increment the fraction of top vertices considered. For this purpose, we are going to use another
goodness of fit, the top-recall as defined in Section 3.3. This way, the top-10 recall, for instance,
is the amount of nodes in the top 10 metric ranking which are in the actual top 10 reference
ranking. For this work, the recall plots are going to show the top-1, top-5, top-10, top-20, top-30,
and so on.

At each plot, we also plot the curve of the T1 ranking, which is considered as a reference (it
must be the same as it is in Figure 4).

First, we consider those metrics described in Section 2.1 and those proposed in this work
because of their similarity with the degree metric. The results are shown in Figure 9, where
we can notice several features. In general, betweenness and closeness are outperformed by the
other metrics, even when closeness performance from 10% on is quite competitive (the first 10%
of the nodes is approximately the top-80). Also, we can check that µ-PCI slightly outperforms
the degree ranking, which is consistent with what we expected. Finally, the effective degree,
EgoAED and the T1 ranking are close each other and clearly outperform the other metrics.

Rankings described in Section 2.2 are shown in Figure 10. Surprisingly, PageRank is able to
recall succesfully the top-1 ranking, what might be considered lucky if it had not a good perfor-
mance, in general. Among the HITS metrics, the hub score clearly outperforms the authority
score. However, both HITS rankings have a low performance at the first 20% top ranking.
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Fig. 9: Ranking recall for centrality met-
rics.
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Fig. 10: Ranking recall for other centrality
metrics.
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Fig. 11: Summary of the metrics with higher ranking recall.

In order to show and compare the metrics with higher performances we have summarized
them in Figure 11.

5 Conclusions and Future Work

This paper analyzed an actual diffusion dataset from an OSN called Tumblr, from where we have
built a weighted network based on the relationship activities. We aimed at ranking the nodes
in the network in order to retrieve the most relevant ones. For this purpose, we took the last
(temporal) part of the diffusion data for being the ground truth (or “solution”). We proposed
some ranking metrics for our aim, which also were easy computable. These metrics have been
tested and compared with a range of centrality metrics widely used in the literature, where, in
general, our proposed metrics outperformed the other ones. Besides, the diffusion data itself (T1
ranking) has behaved as one of the best rankings in our tests. However, we cannot say that any
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of the techniques has a high performance, aside from PageRank ranking with the top-1 recall.
Also, we have checked some previous results previously observed on Twitter such as a low

reciprocity rate [7], or similar reblog/reshare/retweet delay and rate [11]. Besides, we might
have experimented oscilations in the influential ranking due to the occurrence of an event (tev ),
as claimed in [7].

Regarding the current difussion models for epidemics or rumors, we have seen that they
do not match real diffusion data due to the fact that they usually have a uniform propagation
success rate (λ or β), which might seem to be far away from reallity. However, thay have good
results [12, 18]. So, we are really wondering if these models could be improved somehow, being
closer to reallity, or their approximations are quite good enough.

Finally, we should test our experiments in other OSN’s as well as using larger networks, in
order to check if we have similar results.
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