
The Importance of Being Earnest

in Crowdsourcing Systems

Alberto Tarable, † Alessandro Nordio, † Emilio Leonardi, ∗ † Marco Ajmone Marsan ∗ ‡ †

† CNR-IEIIT, Torino, Italy, ∗ Politecnico di Torino, Italy, ‡ IMDEA Networks Institute, Madrid, Spain

Abstract— This paper presents the first systematic investiga-
tion of the potential performance gains for crowdsourcing sys-
tems, deriving from available information at the requester about
individual worker earnestness (reputation). In particular, we first
formalize the optimal task assignment problem when workers’
reputation estimates are available, as the maximization of a
monotone (submodular) function subject to Matroid constraints.
Then, being the optimal problem NP-hard, we propose a simple
but efficient greedy heuristic task allocation algorithm. We also
propose a simple “maximum a-posteriori“ decision rule. Finally,
we test and compare different solutions, showing that system
performance can greatly benefit from information about workers’
reputation. Our main findings are that: i) even largely inaccurate
estimates of workers’ reputation can be effectively exploited in the
task assignment to greatly improve system performance; ii) the
performance of the maximum a-posteriori decision rule quickly
degrades as worker reputation estimates become inaccurate; iii)
when workers’ reputation estimates are significantly inaccurate,
the best performance can be obtained by combining our proposed
task assignment algorithm with the LRA decision rule introduced
in the literature.

I. INTRODUCTION

Crowdsourcing is a term often adopted to identify net-
worked systems that can be used for the solution of a wide
range of complex problems by integrating a large number of
human and/or computer efforts [1]. Alternative terms, each
one carrying its own specific nuance, to identify similar
types of systems are: collective intelligence, human computa-
tion, master-worker computing, volunteer computing, serious
games, voting problems, peer production, citizen science (and
others). The key characteristic of these systems is that a
requester structures his problem in a set of tasks, and then
assigns tasks to workers that provide answers, which are then
used to determine the correct task solution through a decision
rule. Well-known examples of such systems are SETI@home,
which exploits unused computer resources to search for extra-
terrestrial intelligence, and the Amazon Mechanical Turk,
which allows the employment of large numbers of micro-
paid workers for tasks requiring human intelligence (HIT
– Human Intelligence Tasks). Examples of HIT are image
classification, annotation, rating and recommendation, speech
labeling, proofreading, etc. In the Amazon Mechanical Turk,
the workload submitted by the requester is partitioned into
several small atomic tasks, with a simple and strictly specified
structure. Tasks, which require small amount of work, are then
assigned to (human) workers. Since on the one hand answers
may be subjective, and on the other task execution is typically
tedious, and the economic reward for workers is pretty small,

0This article has been partially supported by the Madrid Regional Govern-
ment through the TIGRE5-CM program (S2013/ICE-2919)

workers are not 100 % reliable (earnest), in the sense that
they may provide incorrect answers. Hence, the same task is
normally assigned in parallel (replicated) to several workers,
and then a majority decision rule is applied to their answers.
A natural trade-off between the reliability of the decision
and cost arises; indeed, increasing the replication factor of
every task, we can increase the reliability degree of the final
decision about the task solution, but we necessarily incur
higher costs (or, for a given fixed cost, we obtain a lower task
throughput). Although the pool of workers in crowdsourcing
systems is normally large, it can be abstracted as a finite set
of shared resources, so that the allocation of tasks to workers
(or, equivalently, of workers to tasks) is of key relevance to
the system performance.

Some believe that crowdsourcing systems will provide a
significant new type of work organization paradigm, and will
employ large numbers of workers in the future, provided that
the main challenges in this new type of organizations are
correctly solved. In [2] the authors identify a dozen such
challenges, including i) workflow definition and hierarchy, ii)
task assignment, iii) real-time response, iv) quality control
and reputation. Task assignment and reputation are central
to this paper, where we discuss optimal task assignment
with approximate information about the quality of answers
generated by workers (with the term worker reputation we
generally mean the worker earnestness, i.e., the credibility of a
worker’s answer for a given task, which we will quantify with
an error probability). Our optimization aims at minimizing
the probability of an incorrect task solution for a maximum
number of tasks assigned to workers, thus providing an upper
bound to delay and a lower bound on throughput. A dual ver-
sion of our optimization is possible, by maximizing throughput
(or minimizing delay) under an error probability constraint.
Like in most analyses of crowdsourcing systems, we assume no
interdependence among tasks, but the definition of workflows
and hierarchies is an obvious next step. Both these issues (the
dual problem and the interdependence among tasks) are left
for further work.

The performance of crowdsourcing systems is not yet
explored in detail, and the only cases which have been ex-
tensively studied in the literature assume that the quality of
the answers provided by each worker (the worker reputation)
are not known at the time of task assignment. This assumption
is motivated by the fact that the implementation of reputation-
tracing mechanisms for workers is challenging, because the
workers’ pool is typically large and highly dynamical. Fur-
thermore, in some cases the anonymity of workers must be
preserved. Nevertheless, we believe that a clear understanding
of the potential impact on the system performance of even

approximate information about the workers’ reputation in the
task assignment phase is extremely important, and can properly
assess the relevance of algorithms that trace the reputation
of workers. Examples of algorithms that incorporate auditing
processes in a sequence of task assignments for the worker
reputation assessment can be found in [3]–[9].

Several algorithms were recently proposed in the techni-
cal literature to improve the performance of crowdsourcing
systems without a-priori information about worker reputation
[10]–[14]. In particular, [13] proposed an adaptive simple on-
line algorithm to assign an appropriate number of workers to
every task, so as to meet a prefixed constraint on problem
solution reliability. In [10]–[12], [14], instead, it was shown
that the reliability degree of the final problem solution can
be significantly improved by replacing the simple majority
decision rule with smarter decision rules that differently weigh
answers provided by different workers. Essentially the same
decision strategy was independently proposed in [10], [11]
and [14] for the case in which every task admits a binary
answer, and then recently extended in [12] to the more general
case. The proposed approach exploits existing redundancy and
correlation in the pattern of answers returned from workers to
infer an a-posteriori reliability estimate for every worker. The
derived estimates are then used to properly weigh workers’
answers.

The goal of this paper is to provide the first systematic
analysis of the potential benefits deriving from some form of
a-priori knowledge about the reputation of workers. With this
goal in mind, first we define and analyze the task assignment
problem when workers’ reputation estimates are available. We
show that in some cases, the task assignment problem can be
formalized as the maximization of a monotone submodular
function subject to Matroid constraints. A greedy algorithm
with performance guarantees is then devised. In addition, we
propose a simple “maximum a-posteriori“ (MAP) decision
rule, which is well known to be optimal when perfect estimates
of workers’ reputation are available. Finally, our proposed
approach is tested in several scenarios, and compared to
previous proposals.

Our main findings are:

• even largely inaccurate estimates of workers’ reputa-
tion can be effectively exploited in the task assignment
to greatly improve system performance;

• the performance of the maximum a-posteriori decision
rule quickly degrades as worker reputation estimates
become inaccurate;

• when workers’ reputation estimates are significantly
inaccurate, the best performance can be obtained by
combining our proposed task assignment algorithm
with the decision rule introduced in [10], [14].

The rest of this paper is organized as follows. Section II
presents and formalizes the system assumptions used in this
paper. Section III contains the formulation of the problem
of the optimal allocation of tasks to workers, with different
possible performance objectives. Section IV proposes a greedy
allocation algorithm, to be coupled with the MAP decision rule
described in Section V. Section VI presents and discusses the
performance of our proposed approach in several scenarios,

and compares it to those of previous proposals. Finally, Section
VII concludes the paper and discusses possible extensions.

II. SYSTEM ASSUMPTIONS

We consider T binary tasks θ1, θ2, . . . , θT , whose outcomes
can be represented by i.i.d. uniform random variables (RV’s)
τ1, τ2, . . . , τT over {±1}, i.e., P{τt = ±1} = 1

2 , t = 1, . . . , T .
In order to obtain a reliable estimate of task outcomes, a
requester assigns tasks to workers selected from a given popu-
lation of size W , by querying each worker ωw, w = 1, . . . ,W
a subset of tasks.

Each worker is modeled as a binary symmetric channel
(BSC) [15, p. 8]. This means that worker ωw, if queried about
task θt, provides a wrong answer with probability ptw and a
correct answer with probability 1− ptw. Note that we assume
that the error probabilities ptw depend on both the worker
and the task, but they are taken to be time-invariant, and
generally unknown to the requester. The fact that the error
probability may depend, in general, both on the worker and
the task reflects the realistic consideration that tasks may have
different levels of difficulty, that workers may have different
levels of accuracy, and may be more skilled in some tasks than
in others.

Unlike the model in [10], [11], we assume in this paper
that, thanks to a-priori information, the requester can group
workers into classes, each one composed of workers with sim-
ilar accuracy and skills. In practical crowdsourcing systems,
where workers are identified through authentication, such a-
priori information can be obtained by observing the results of
previous task assignments. More precisely, we suppose that
each worker belongs to one of K classes, C1, C2, . . . , CK , and
that each class is characterized, for each task, by a different
average error probability, known to the requester. Let πtk

be the average error probability for class Ck and task θt,
k = 1, . . . ,K , t = 1, . . . , T . We emphasize that πtk does
not necessarily precisely characterize the reliability degree
of individual workers within class k while accomplishing
task θt; this for the effect of possible errors/inaccuracies in
the reconstruction of user profiles. Workers with significantly
different degree of reliability can, indeed, coexist within class
k. In particular our class characterization encompasses two
extreme scenarios:

• full knowledge about the reliability of workers, i.e.,
each worker belonging to class Ck has error probability
for task θt deterministically equal to πtk , and

• a hammer-spammer (HS) model [10], in which per-
fectly reliable and completely unreliable users coexists
within the same class. A fraction 2πtk of workers
in class Ck, when queried about task θt, has error
probability equal to 1

2 (the spammers), while the
remaining workers have error probability equal to zero
(the hammers).

Observe that the above two scenarios represent two extremal
cases in which the error probability associated to users within a
class is either deterministic (former case), or a random variable
with given average and maximum possible variance (latter
case).

2

Suppose that class Ck contains a total of Wk workers, with

W =
∑K

k=1 Wk. The first duty the requester has to carry out is
the assignment of tasks to workers. We impose the following
two constraints on possible assignments:

• a given task θt can be assigned at most once to a given
worker ωw, and

• no more than rw tasks can be assigned to worker ωw.

Notice that the second constraint arises from practical consid-
erations on the amount of load a single worker can tolerate.
We also suppose that each single assignment of a task to a
worker has a cost, which is independent of the worker’s class.
In practical systems, such cost represents the (small) wages
per task the requester pays the worker, in order to obtain
answers to his queries. Alternatively, in voluntary computing
systems, the cost can describe the time necessary to perform
the computation. The reader may be surprised by the fact that
we assume worker cost to be independent from the worker
class, while it would appear more natural to differentiate
wages among workers, favoring the most reliable, so as to
incentivize workers to properly behave [6], [7]. Our choice,
however, is mainly driven by the following two considerations:
i) while it would be natural to differentiate wages according
to the individual reputation of workers, when the latter infor-
mation is sufficiently accurate, it is much more questionable
to differentiate them according to only an average collective
reputation index, such as πtk, especially when workers with
significantly different reputation coexist within the same class;
ii) since in this paper our main goal is to analyze the impact on
system performance of a-priori available information about the
reputation of workers, we need to compare the performance of
such systems against those of systems where the requester is
completely unaware of the worker reputation, under the same
cost model. Finally, we wish to remark that both our problem
formulation and proposed algorithms naturally extend to the
case in which costs are class-dependent.

Let an allocation be a set of assignments of tasks to
workers. More formally, we can represents a generic allo-
cation with a set G of pairs (t, w) with t ∈ {1, · · · , T }
and w ∈ {1, · · · ,W}, where every element (t, w) ∈ G
corresponds to an individual task-worker assignment. Let O
be the complete allocation set, comprising every possible
individual task-worker assignment (in other words O is the set
composed of all the possible T · W pairs (t, w)). Of course,
by construction, for any possible allocation G, we have that
G ⊆ O. Hence, the set of all possible allocations corresponds
to the power set of O, denoted as 2O .

The set G can also be seen as the edge set of a bipartite
graph where the two node subsets represent tasks and workers,
and there is an edge connecting task node t and worker node
w if and only if (t, w) ∈ G. It will be sometimes useful in
the following to identify the allocation with the biadjacency
matrix of such graph. Such binary matrix of size T ×W will
be denoted G = {gtw} and referred to as the allocation matrix.
In the following we will interchangeably use the different
representations, according to convenience. This because for the
analysis of some of the properties of the scheduling problem,
such as sub-modularity of the objective function, will be
natural to adopt the set notation, while for others will be much
more convenient to adopt the the matrix notation.

In this work, we suppose that the allocation is non-adaptive,
in the sense that all assignments are made before any decision
is attempted. With this hypothesis, the requester must decide
the allocation only on the basis of the a-priori knowledge on
worker classes. Adaptive allocation strategies can be devised
as well, in which, after a partial allocation, a decision stage
is performed, and gives, as a subproduct, refined a-posteriori
information both on tasks and on workers’ accuracy. This
information can then be used to optimize further assignments.
However, in [11] it was shown that non-adaptive allocations
are order optimal in a single-class scenario.

When all the workers’ answers are collected, the requester
starts deciding, using the received information. Let A = {atw}
be a T ×W random matrix containing the workers’ answers
and having the same sparsity pattern as G. Precisely, atw is
nonzero if and only if gtw is nonzero, in which case atw = τt
with probability 1− ptw and atw = −τt with probability ptw.
For every instance of the matrix A the output of the decision
phase is an estimate τ̂1, τ̂2, . . . , τ̂T for task values.

III. PROBLEM FORMULATION

In this section, we formulate the problem of the optimal
allocation of tasks to workers, with different possible per-
formance objectives. We formalize such problem under the
assumption that each worker in class Ck has error probability
for task θt deterministically equal to πtk.

If the individual error probability of the workers within one
class is not known to the scheduler, it becomes irrelevant which
worker in a given class is assigned the task. What only matters
is actually how many workers of each class is assigned each
task. By sorting the columns (workers) of the allocation matrix
G, we can partition it as G = [G1,G2, . . . ,GK] where Gk

is a binary matrix of size T ×Wk representing the allocation

of tasks to class-k workers. Define W (k) =
∑k

i=1 Wi and

W (0) = 0. Define also dtk as the weight (number of ones) in
the t-th row of matrix Gk, which also represents the degree
of the t-th task node in the subgraph containing only worker
nodes from the k-th class.

A. Optimal allocation

We formulate the problem of optimal allocation of tasks
to workers as a combinatorial optimization problem for a
maximum overall cost. Namely, we fix the maximum number
of assignments (or, equivalently, the maximum number of ones
in matrix G) to a value C, and we seek the best allocation
in terms of degree set D = {dtk, t = 1, 2, . . . , T, k =
1, 2, . . . ,K}. Let P (D) be a given performance parameter to
be maximized. Then, the problem can be formalized as follows.

Dopt = arg max
D

P (D)

s.t. dtk integer, 0 ≤ dtk ≤ Wk, t = 1, 2, . . . , T,

k = 1, 2, . . . ,K
T∑

t=1

dtk ≤
W (k)∑

w=W (k−1)+1

rw, k = 1, 2, . . . ,K,

T∑

t=1

K∑

k=1

dtk ≤ C (1)

3

where the first constraint expresses the fact that dtk is the
number of ones in the t-th row of Gk, the second constraint
derives from the maximum number of tasks a given worker
can be assigned, and the third constraint fixes the maximum
overall cost.

By adopting the set notation for allocations, we can denote
with F the family of all feasible allocations (i.e. the collection
of all the allocations respecting the constraints on the total cost
and the worker loads). Observe that by construction F ⊆ 2O

is composed of all the allocations G satisfying: i) |G| ≤ C,
and ii) |L(w,G)| ≤ rw ∀w, where L(w,G) represents the set
of individual assignments in G associated to w. The advantage
of the set notation is that we can characterize the structure of
the family F on which the performance optimization must be
carried out; in particular, we can prove that:

Proposition 3.1: The family F forms a Matroid [16].
Furthermore, F satisfies the following property. Let B ∈ F

be the family of maximal sets in F , then

q =
maxG∈B |G|

minG∈B |G|
= 1 .

The proof is reported in [17].

1) Computational complexity: the complexity of the above
optimal allocation problem heavily depends on the structure
of the objective function P (D) (which is rewritten as P (G)
when we adopt the set notation). As a general property,
observe that necessarily P (G) is monotonic, in the sense that
P (G1) ≤ P (G2) whenever G1 ⊂ G2. However, in general, we
cannot assume that P (G) satisfies any other specific property
(some possible definitions for P (G) are given next). For a
general monotonic objective function, the optimal allocation
of tasks to workers can be shown to be NP-hard, since it
includes as a special case the well-known problem of the
maximization of a monotonic submodular function, subject
to a uniform Matroid constraint (see [16])1. When P (G) is
submodular, the optimal allocation problem falls in the well-
known class of problems related to the maximization of a
monotonic submodular function subject to Matroid constraints.
For such problems, it has been proved that a greedy algorithm
yields a 1/(1+q)-approximation [16] (where q is defined as in
Proposition 3.1).

In the next subsections, we consider different choices for
the performance parameter P (D).

B. Average task error probability

A possible objective of the optimization, which is most
closely related to typical performance measures in practical
crowdsourcing systems, is the average task error probability,
which is defined as:

P1(D) = −
1

T

T∑

t=1

Pe,t (2)

with Pe,t = P{τ̂t 6= τt} = P{τ̂t 6= 1|τt = 1} where the second
equality follows from symmetry. Of course, Pe,t can be exactly

1A set function f : 2O → R
+ is said to be submodular if: ∀A,B ∈: 2O we

have f(A∪B)+f(A∩B) ≤ f(A)+f(B). The problem of the maximization
of a monotonic submodular function subject to a uniform Matroid constraint
corresponds to: {max|A|≤K f(A) for K < |O| with f(.) submodular.}

computed only when the true workers’ error probabilities ptw
are available; furthermore it heavily depends on the adopted
decoding scheme. As a consequence, in general, Pe,t can only
be approximately estimated by the requester by confusing
the actual worker error probability ptw (which is unknown)
with the corresponding average class error probability πtk.
Assuming a maximum-a-posteriori (MAP) decoding scheme,
namely, τ̂t(α) = argmaxτt∈±1 P{τt|at = α}, where at is the
t-th row of A and α is its observed value, we have

Pe,t =
∑

α:P{τt=1|at=α}<1/2

P{at = α|τt = 1}. (3)

It is easy to verify that the exact computation of the previous
average task error probability estimate requires a number of
operations growing exponentially with the number of classes
K . Thus, when the number of classes K is large, the evaluation
of (3) can become critical.

To overcome this problem, we can compare the perfor-
mance of different allocations on the basis of a simple pes-
simistic estimate of the error probability, obtained by applying
the Chernoff bound to the random variable that is driving
the maximum-a-posteriori (MAP) decoding (details on a MAP
decoding scheme are provided in the next section). We have:

Pe,t ≤ P̂e,t = exp

(
−

∑
k dtk(1− 2πtk)ztk∑

j(dtkztk)
2

)

where ztk = log(1−πtk

πtk

). Thus, the performance metric asso-
ciated with an allocation becomes:

P2(D) = −
1

T

T∑

t=1

P̂e,t

The computation of P2(D) requires a number of operations
that scales linearly with the product T ·K . At last, we would
like to remark that in practical cases we expect the number of
classes to be sufficiently small (order of few units), in such
cases the evaluation of (3) is not really an issue.

C. Overall mutual information

An alternative information-theoretic choice for P (D) is the
mutual information between the vector of RVs associated with
tasks τ = (τ1, τ2, . . . , τT) and the answer matrix A, i.e.,

P3(D) = I(A; τ) =

T∑

t=1

I(at; τt) . (4)

It is well known that a tight relation exists between the mutual
information and the achievable error probability, so that a max-
imization of the former corresponds to a minimization of the
latter. We remark, however, that, contrary to error probability,
mutual information is independent from the adopted decoding
scheme, because it refers to an optimal decoding scheme. This
property makes the adoption of the mutual information as
the objective function for the task assignment quite attractive,
since it permits to abstract from the decoding scheme. The
second equality in (4) comes from the fact that tasks are
independent and workers are modeled as BSCs with known
error probabilities, so that answers to a given task do not give

4

any information about other tasks. By definition

I(at; τt) = H(at)−H(at|τt) = H(τt)−H(τt|at) (5)

where H(a) denotes the entropy of the RV a, given by

H(a) = −Ea[logP(a)]

and for any two random variables a, b, H(a|b) is the condi-
tional entropy defined as

H(a|b) = −EbEa|b[logP(a|b)].

In what follows, we assume perfect knowledge of worker
reliabilities, i.e., we assume that each class-k worker has
error probability with respect to task τt exactly equal to πtk,
remarking than in the more general case, the quantities we
obtain by substituting ptw with the corresponding class average
πtk, can be regarded as computable approximations for the true
uncomputable mutual information.

Since we have modeled all workers as BSCs, each single
answer is independent of everything else given the task value,
so that

H(at|τt) =
∑

atw 6=0

H(atw|τt) =
K∑

k=1

dtkHb(πtk). (6)

where
Hb(p) = −p log p− (1− p) log(1 − p).

For the second equality in (5), H(τt) = 1 because τt is a
uniform binary RV, and

H(τt|at) =
∑

α

P{at = α}H(τt|at = α)

=
∑

α

P{at = α}Hb(P{τt = 1|at = α}) (7)

where α runs over all possible values of at.

By symmetry, for every α such that P{τt = 1|at = α} <
1
2 , there is α′ such that P{at = α

′} = P{at = α} and P{τt =
1|at = α

′} = 1 − P{τt = 1|at = α}. As a consequence, we
can write

H(τt|at) = 2
∑

α:P{τt=1|at=α}<1/2

P{at = α}Hb(P{τt = 1|at = α})

=
∑

α:P{τt=1|at=α}<1/2

(P{at = α|τt = 1}+ P{at = α|τt = −1}) ·

Hb(P{τt = 1|at = α}) (8)

Notice the relationship of the above expression with (3). If in
(8) we substitute Hb(P{τt = 1|at = α}) with P{τt = 1|at =
α}, thanks to Bayes’ rule, we obtain (3).

An explicit computation of I(A; τ) can be found in
Appendix A. As for the task error probability, the number
of elementary operations required to compute I(A; τ) grows
exponentially with the number of classes K .

An important property that mutual information satisfies is
submodularity. This property provides some guarantees about
the performance of the greedy allocation algorithm described
in Section IV-A.

Proposition 3.2 (Submodularity of the mutual information):

Let G be a generic allocation for task θ. Then, the mutual
information I(G; θ) is a submodular function.

Proof: The proof is given in [17].

D. Max-min performance parameters

The previous optimization objectives represent a sensible
choice whenever the target is to optimize the average task
performance. However, in a number of cases it can be more
appropriate to optimize the worst performance among all tasks,
thus adopting a max-min optimization approach.

Along the same lines used in the definition of the previous
optimization objectives, we can obtain three other possible
choices of performance parameters to be used in the optimiza-
tion problem defined in (1), namely, the maximum task error
probability,

P4(D) = − max
t=1,...,T

Pe,t (9)

the Chernoff bound on the maximum task error probability,

P5(D) = − max
t=1,...,T

P̂e,t (10)

and the minimum mutual information,

P6(D) = min
t=1,2,...,T

I(at; τt). (11)

IV. ALLOCATION STRATEGIES

As we observed in Section III, the optimization problem
stated in (1) is NP-hard, but the submodularity of the mu-
tual information objective function over a Matroid, coupled
with a greedy algorithm yields a 1/2-approximation [16] (see
Proposition 3.1). We thus define in this section a greedy task
assignment algorithm, to be coupled with the MAP decision
rule which is discussed in the next section.

A. Greedy task assignment

The task assignment we propose to approximate the opti-
mal performance is a simple greedy algorithm that starts from
an empty assignment (G(0) = ∅), and at every iteration i adds
to G(i−1) the individual assignment (t, w)(i), so as to maximize
the objective function. In other words;

(t, w)(i) = arg max
(t,w)∈O\G(i−1),(G(i−1)∪{(t,w)})∈F

P (G(i−1) ∪ {(t, w)})

The algorithm stops when no assignment can be further added
to G without violating some constraint.

To execute this greedy algorithm, at step i, for every task
t, we need to i) find, if any, the best performing worker to
which task t can be assigned without violating constraints,
and mark the assignment (t, w) as a candidate assignment;
ii) evaluate for every candidate assignment the performance
index P (G(i−1)∪(t, w)) ∀t; iii) choose among all the candidate
assignments the one that greedily optimizes performance.

Observe that, as a result, the computational complexity of
our algorithm is O(T 2 ·WZ) where Z represents the number
of operations needed to evaluate P (G).

Note that in light of both Propositions 3.1 and 3.2, the
above greedy task assignment algorithm provides a 1/2-
approximation when the objective function P3(G) is chosen.

5

Furthermore, we wish to mention that a better 1 − 1/e-
approximation can be obtained by cascading the above greedy
algorithm with the special local search optimization algorithm
proposed in [16]; unfortunately, the corresponding cost in
terms of computational complexity is rather severe, because
the number of operations requested to run the local search

procedure is Õ((T ·W)8Z) 2.

B. Uniform allocation

Here we briefly recall that [10], [11] proposed a simple
task allocation strategy (under the assumption that workers are
indistinguishable) according to which a random regular bipar-
tite graph is established between tasks and selected workers.
Every selected worker is assigned the same maximal number
of tasks, i.e. rw = r ∀w, except for rounding effects induced
by the constraint on the maximum total number of possible
assignments C.

V. DECISION RULES

A. Majority voting

Majority voting is the simplest possible task-decision rule
which is currently implemented in all real-world crowdsourc-
ing systems. For every task θt, it simply consists in counting
the {+1} and the {−1} in at and then taking τ̂t(at) in
accordance to the answer majority. More formally:

τ̂t(at) = sgn

(
∑

w

atw

)
. (12)

B. MAP decision rule

We investigate the performance of the greedy task assign-
ment algorithm, when coupled with the MAP decision rule for
known workers reputation.

Given an observed value of at, the posterior log-likelihood
ratio (LLR) for task τt is

LLRt(at) = log
P{τt = 1|at}

P{τt = −1|at}

= log
P{at|τt = 1}

P{at|τt = −1}

=
∑

w:atw 6=0

log
P{atw|τt = 1}

P{atw|τt = −1}
(13)

where the second equality comes from Bayes’ rule and the
fact that tasks are uniformly distributed over ±1, and the third
equality comes from modelling workers as BSCs. Let mtk be
the number of “−1” answers to task t from class-k workers.
Then

LLRt(at) =

K∑

k=1

(dtk − 2mtk) log
1− πtk

πtk
. (14)

The MAP decision rule outputs the task solution estimate
τ̂t = 1 if LLRt > 0 and τ̂t = −1 if LLRt < 0, that is,

τ̂t(at) = sgn (LLRt(at)) . (15)

2The function f(n) is Õ(g(n)) if f(n) = O(g(n) logb n) for any positive
constant b.

Observe that the computation of (14) has a complexity
growing only linearly with K , and that, according to (15), each
task solution is estimated separately. Note also that, whenever
worker reputation is not known a-priori, the above decision
rule is no more optimal, since it neglects the information that
answers to other tasks can provide about worker reputation.

C. Low-rank approximation (LRA)

Finally, for the sake of comparison, we briefly recall here
the Low-Rank Approximation decision rule proposed in [10],
[11], [14] for the case when: i) no a-priori information about
the reputation of workers is available, ii) the error probability
of every individual worker w is the same for every task, i.e.,
ptw = pw ∀t. The LRA decision rule was shown to provide
asymptotically optimal performance under assumptions i) and
ii) [11].

Denote with v the leading right singular vector of A, the
LRA decision is taken according to:

τ̂t(at) = sgn (LRA(at))

where
LRA(at) =

∑

w

atwvw

The idea underlying the LRA decision rule is that each
component of the leading singular vector of A, measuring
the degree of coherence among the answers provided by the
correspondent worker, represents a good estimate of the worker
reputation.

VI. RESULTS

In this section, we study the performance of a system where
T = 100 tasks are assigned to a set of workers which are
organized in K = 3 classes. Each worker can handle up to 20
tasks, i.e., rw = 20, w = 1, . . . ,W .

We compare the performance of the allocation algorithms
and decision rules described in Sections IV and V, in terms of
achieved average error probability, Pe. More specifically, we
study the performance of:

• the “Majority voting” decision rule applied to the
“Uniform allocation” strategy, hereinafter referred to
as “Majority”;

• the “Low rank approximation” decision rule applied
to the “Uniform allocation” strategy, in the figures
referred to as “LRA uniform”;

• the “Low rank approximation” decision rule applied to
the “Greedy allocation” strategy, in the figures referred
to as “LRA greedy”;

• the “MAP” decision rule applied to the “Greedy
allocation” strategy, in the following referred to as
“MAP greedy”.

Specifically, for the greedy allocation algorithm, described in
Section IV-A, we employed the overall mutual information
P3(D) as objective function.

The first set of results is reported in Figure 1. There
we considered the most classical scenario where tasks are
identical.

6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 2 4 6 8 10 12 14 16 18 20

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

β

 LRA uniform

 Majority

 LRA greedy

 MAP greedy

(a)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 2 4 6 8 10 12 14 16 18 20

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

β

 LRA uniform

 Majority

 LRA greedy

 MAP greedy

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

x

 LRA uniform

 Majority

 LRA greedy

 MAP greedy

(c)

Fig. 1. Average error probability as a function of the average number of workers per task, β, and of the parameter x, for πt1 = 0.1, πt2 = 0.2, πt3 = 0.5,
W1 = 30,W2 = 120, and W3 = 150. In figure (a) and (b) we set x = 0 and x = 1, respectively, while in figure (c) we set β = 10.

The results depicted in Figure 1(a) assume that all workers
belonging to the same class have the same error probability
i.e., ptw = πtk . In particular, we set πt1 = 0.1, πt2 =
0.2, πt3 = 0.5 for all t. This means that workers in class 1
are the most reliable, while workers in class 3 are spammers.
Moreover, the number of available workers per class is set to
W1 = 30,W2 = 120,W3 = 150. The figure shows the average
error probability achieved on the tasks, plotted versus the
average number of workers per task, β = C/T . As expected,
greedy allocation strategies perform better due to the fact that
they exploit the knowledge about the workers’ reliability (ptw),
and thus they assign to tasks the best possible performing
workers. These strategies provide quite a significant reduction
of the error probability, for a given number of workers per task,
or a reduction in the number of assignments required to achieve
a fixed target error probability. For example, Pe = 10−2 can
be achieved by greedy algorithms by assigning only 4 workers
per task (on average), while algorithms unaware of workers
reliability require more than 20 workers per task (on average).
We also observe that the LRA algorithm proposed in [10]
performs similarly to the optimal MAP algorithm.

Next, we take into account the case where in each class
workers do not behave exactly the same. As already observed,
this may reflect both possible inaccuracies/errors in the re-
construction of user profiles, and the fact that the behavior
of workers is not fully predictable, since it may vary over
time. Specifically, we assume that, in each class, two types
of workers coexist, each characterized by a different error
probability ptw. More precisely, workers of type 1 have error
probability ptw = (1 − x)πtk , while workers of type 2 have
error probability probability ptw = (1 − x)πtk + x/2, where
0 ≤ x ≤ 1 is a parameter. Moreover workers are of type 1 and
type 2 with probability 1−2πtk and 2πtk, respectively, so that
the average error probability over the workers in class k is πtk.
We wish to emphasize that this bimodal worker model, even if
it may appear somehow artificial, is attractive for the following
two reasons: i) it is simple (it depends on only one scalar
parameter x), and ii) it encompasses as particular cases the
two extreme cases of full knowledge and hammer-spammer.
Indeed, for x = 0 all workers in each class behave exactly the
same (they all have error probability ptw = ptk); this is the
case depicted in Figure 1(a), while for x = 1 we recover

the hammer-spammer scenario. This case is represented in
Figure 1(b), where workers are spammers with probability
2πtk and hammers with probability 1−2πtk. Here, the greedy
allocation algorithms still outperform the others. However,
the MAP decision rule provides performance lower than the
“LRA greedy” due to the following two facts: i) MAP adopts
a mismatched value of the error probability of individual
workers, when x 6= 0, ii) MAP does not exploit the extra
information on individual worker reliability that is possible
to gather by jointly decoding different tasks. In Figure 1(c),
for β = 10, we show the error probability plotted versus the
parameter x. We observe that the performance of the “MAP
greedy” strategy is independent on the parameter x while the
performance of “LRA greedy” improve as x increases. This
effect can be explained by observing that the LRA ability of
distinguishing good performing workers from bad performing
workers within the same class increases as x increases.

Next, we assume that the T = 100 tasks are divided into
2 groups of 50 each. Workers processing tasks of group 1
and 2 are characterized by average error probabilities πt1 =
0.05, πt2 = 0.1, πt3 = 0.5 and πt1 = 0.1, πt2 = 0.2, πt3 =
0.5, respectively. This scenario reflects the case where tasks of
group 2 are more difficult to solve than tasks of group 1 (error
probabilities are higher). Workers of class C3 are spammers
for both kinds of tasks. The error probabilities provided by the
algorithms under study are depicted in Figure 2, as a function
of x and for β = 10.

We observe that all strategies perform similarly, like in
the scenario represented by Figure 1(c), meaning that the
algorithms are robust enough to deal with changes in the
behavior of workers with respect to tasks. We wish to remark
that the LRA decoding scheme is fairly well performing also
in this scenario, even if it was conceived and proposed only
for the simpler scenario of indistinguishable tasks. This should
not be too surprising, in light of the fact that, even if the
error probability of each user depends on the specific task, the
relative ranking among workers remains the same for all tasks.

Finally, in Figure 3 we consider the same scenario as in
Figure 2. Here, however, the number of available workers per
class is set to W1 = 40,W2 = 120,W3 = 40, and the workers
error probabilities for the tasks in group 1 and 2 are given

7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

x

 LRA uniform

 Majority

 LRA greedy

 MAP greedy

Fig. 2. Average error probability plotted versus x, for β = 10 and task
organized in two groups of different difficulties. For the first group of tasks
πt1 = 0.05, πt2 = 0.1, πt3 = 0.5, while for the second group πt1 =
0.1, πt2 = 0.2, πt3 = 0.5, Moreover W1 = 30,W2 = 120,W3 = 150.

by πt1 = 0.1, πt2 = 0.25, πt3 = 0.5, and πt1 = 0.5, πt2 =
0.25, πt3 = 0.1, respectively. This situation reflects the case
where workers are more specialized or interested in solving
some kinds of tasks. More specifically, here workers of class
1 (class 3) are reliable when processing tasks of group 1
(group 2), and behave as spammers when processing tasks of
group 2 (group 1). Workers of class 2 behave the same for
all tasks. In terms of performance, the main difference with
respect to previous cases is that the “LRA greedy” algorithm
shows severely degraded error probabilities for β ≤ 16. This
behavior should not surprise the reader, since our third scenario
may be considered as adversarial for the LRA scheme, in light
of the fact that the relative ranking among workers heavily
depends on the specific task. Nevertheless, it may still appear
amazing that “LRA greedy” behaves even worse than the
simple majority scheme in several cases. The technical reason
for this behavior is related to the fact that, in our example, for
β ≤ 16, tasks of group 1 (group 2) are allocated to workers
of class 1 (class 3) only, whilst workers of class 2 are not
assigned any task. For this reason, the matrix A turns out
to have a block diagonal structure, which conflicts with the
basic assumption made by LRA that matrix E[A] can be well
approximated by a unitary rank matrix. For β > 16, tasks are
also allocated to workers of class 2; in this situation, the matrix
A is not diagonal anymore, and the “LRA greedy” performs
quite well. Observe, however, that also in this case even a
fairly imprecise characterization of the worker behavior can be
effectively exploited by the requester to significantly improve
system performance.

Finally, we want to remark that we have tested several
versions of greedy algorithms under different objective func-
tions, such as P1(D), P2(D), and P3(D), finding that they
provide, in general, comparable performance. The version
employing mutual information was often providing slightly
better results, especially in the case of LRA greedy. This
can be attributed to the following two facts: i) the mutual
information was proved to be submodular; ii) being mutual
information independent from the adopted decoding scheme, it
provides a more reliable metric for comparing the performance

of different task allocations under the LRA decoding scheme
with respect to the error probability P1(D) (which, we recall,
is computed under the assumption that the decoding scheme
is MAP). Unfortunately, due to the lack of space, we cannot
include these results in the paper.

VII. CONCLUDING REMARKS

In this paper we have presented the first systematic investi-
gation of the impact of information about workers’ reputation
in the assignment of tasks to workers in crowdsourcing sys-
tems, quantifying the potential performance gains in several
cases. We have formalized the optimal task assignment prob-
lem when workers’ reputation estimates are available, as the
maximization of a monotone (submodular) function subject
to Matroid constraints. Then, being the optimal problem NP-
hard, we have proposed a simple but efficient greedy heuristic
task allocation algorithm, combined with a simple “maximum
a-posteriori“ decision rule. We have tested our proposed al-
gorithms, and compared them to different solutions, which
can be obtained by extrapolating the proposals for the cases
when reputation information is not available, showing that the
crowdsourcing system performance can greatly benefit from
even largely inaccurate estimates of workers’ reputation. Our
numerical results have shown that:

• even a significantly imperfect characterization of the
workers’ earnestness can be extremely useful to im-
prove the system performance;

• the application of advanced joint tasks decoding
schemes such as LRA can further improve the overall
system performance, especially in the realistic case in
which the a-priori information about worker reputation
is largely affected by errors;

• the performance of advanced joint tasks decoding
schemes such as LRA may become extremely poor
in adversarial scenarios.

APPENDIX

The workers’ answers about the tasks τ are collected in
the random T × W matrix A, defined in Section II. The
information that the answers A provide about the tasks τ is
denoted by

I(A; τ) = H(A)−H(A|τ)

where the entropy H(a) and the conditional entropy H(a|b)
have been defined in Section III-C. We first compute H(A|t)
and we observe that, given the tasks τ , the answer A are

independent, i.e., P(A|τ) =
∏K

k=1

∏T
t=1 P(atk|τt), where atk

is the vector of answers to task θt from users of class Ck.
Since P(A|τ) has a product form, we obtain H(A|τ) =∑K

k=1

∑T
t=1 H(atk|τt). Thanks to the fact that workers of

the same class are independent and all have error probability
πtk , we can write H(atk|τt) = dikHb(πk) where Hb(p) =
−p log p−(1−p) log(1−p) and dtk is the number of allocations
of task t in class Ck. In conclusion, we get:

H(A|τ) =
T∑

t=1

K∑

k=1

dtkHb(πtk)

8

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 2 4 6 8 10 12 14 16 18 20

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

β

 LRA uniform

 Majority

 LRA greedy

 MAP greedy

(a)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 2 4 6 8 10 12 14 16 18 20

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

β

 LRA uniform

 Majority

 LRA greedy

 MAP greedy

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

x

 LRA uniform

 Majority

 LRA greedy

 MAP greedy

(c)

Fig. 3. Average error probability as a function of the average number of workers per task, β, and of the parameter x. Task organized in two groups of
different difficulties. For the first group of tasks πt1 = 0.1, πt2 = 0.25, πt3 = 0.5, while for the second group πt1 = 0.5, πt2 = 0.25, πt3 = 0.1. Moreover
W1 = 40,W2 = 120 and W3 = 40. In figures (a) and (b) we set x = 0 and x = 1, respectively, while in figure (c) we set β = 10.

As for the entropy H(A), we have:

P(A) = EτP(A|τ) = Eτ

T∏

t=1

P(at|τt) =
T∏

t=1

EτtP(at|τt)

where at is the vector of answers to task θt (corresponding
to the t-th row of A). Note that EτtP(at|τt) = P(at), hence

P(A) =
∏T

t=1 P(at) and we immediately obtain H(A) =∑T
t=1 H(at). The probabilities P(atk|τt = 1) and P(atk|τi =

−1) are easy to compute. Indeed for τt = −1 we have

P(atk|τt = −1) = πdtk−mtk

tk (1− πtk)
mtk (16)

where mtk is the number of “−1” answers to task θt from
class-k workers. The above formula derives from the fact that
workers of the same class are independent and have the same
error probability πtk. Similarly

P(atk|τt = +1) = πmtk

tk (1− πtk)
dtk−mtk (17)

The expressions (16) and (17) can compactly written as

P(atk|τt) = (1− πtk)
dtkb

(1−τt)dtk/2−mtkτt
tk (18)

where btk = πtk/(1 − πtk). Since, given τt, workers are
independent, we obtain

P(at) = EτtP(at|τt) = γtkEτt

[
K∏

k=1

b
(1−τt)dtk/2−mtkτt
tk

]

=
γtk
2

[
K∏

k=1

b−mtk

tk +

K∏

k=1

bdtk+mtk

tk

]
=

γtk
2

f(mt)

with mt = [mt1, . . . ,mtK] and f(n) =
∏K

k=1 b
−nk

tk +∏K
k=1 b

dtk+nk

tk . Finally, by using the definition of entropy,

H(at) = Eat
[− logP(at)]

= − log
γtk
2

− Eat
f(mt)

= − log
γtk
2

−
γtk
2

∑

n

f(n) log f(n)

K∏

k=1

(
mtk

nk

)

where n = [n1, . . . , nK] and nk = 0, . . . ,mtk, k = 1, . . . ,K .

REFERENCES

[1] M.-C. Yuen, I. King, K.-S. Leung, ”A Survey of Crowdsourcing
Systems,” IEEE PASSAT-SOCIALCOM, Boston (USA), Oct. 2011.

[2] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J.
Zimmerman, M. Lease, J. Horton, ”The future of crowd work,” ACM

CSCW ’13, New York (USA), 2013.

[3] E. Christoforou, A. Fernandez Anta, C. Georgiou, M. A. Mosteiro, A.
Sanchez, “Applying the dynamics of evolution to achieve reliability
in master-worker computing,” Concurrency and Computation: Practice

and Experience vol. 25, n. 17, pp. 2363–2380, 2013.

[4] A. Fernandez Anta, C. Georgiou, M. A. Mosteiro, “Algorithmic mech-
anisms for internet-based master-worker computing with untrusted and
selfish workers,” IEEE IPDPS 2010, Atlanta (USA), 2010.

[5] A. Fernandez Anta, C. Georgiou, L. Lopez, A. Santos, “Reliable
internet-based master-worker computing in the presence of malicious
workers,” Parallel Processing Letters, vol. 22, n. 1, 2012.

[6] A. Singla, A. Krause, “Truthful incentives in crowdsourcing tasks using
regret minimization mechanisms,” WWW ’13, Rio de Janeiro (Brazil),
2013.

[7] E. Kamar, E. Horvitz, “Incentives for truthful reporting in crowdsourc-
ing,” AAMAS ’12, Valencia (Spain), 2012.

[8] P. Donmez, J. G. Carbonell, J. Schneider, “Efficiently learning the
accuracy of labeling sources for selective sampling,” ACM KDD ’09,
New York (USA), 2009.

[9] Y. Zheng, S. Scott, K. Deng, “Active learning from multiple noisy
labelers with varied costs,” IEEE ICDM 2010, Sydney (Australia), 2010.

[10] D. R. Karger, S. Oh, D. Shah, ”Budget- optimal Crowdsourcing
Using Low-rank Matrix Approximations,” 2011 49th Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
pp.284,291, 28-30 Sept. 2011.

[11] D. R. Karger, S. Oh, D. Shah, “Budget-Optimal Task Allocation for
Reliable Crowdsourcing Systems,” Operations Research vol. 62, no. 1,
pp. 1–24, 2014.

[12] D. R. Karger, S. Oh, D. Shah, “Efficient crowdsourcing for multi-class
labeling,” ACM SIGMETRICS, Pittsburgh (USA), 2013.

[13] I. Abraham, O. Alonso, V. Kandylas, A. Slivkins, “Adaptive Crowd-
sourcing Algorithms for the Bandit Survey Problem,” arXiv:1302.3268.

[14] A. Ghosh, S. Kale, P. McAfee, “Who moderates the moderators?:
crowdsourcing abuse detection in user-generated content,” ACM EC ’11,
New York (USA).

[15] T. M. Cover, J. M. Thomas, Elements of information theory, 2nd ed.,
John Wiley, 2005.

[16] G. Calinescu, C. Chekuri, M. Pl, J. Vondrk, “Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint,” SIAM Journal

on Computing, vol. 40, n. 6, pp. 1740–1766, 2011.

[17] Technical Report http://arxiv.org/pdf/1411.7960v1.pdf

9

