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Abstract. Resource allocation is one of the most relevant problems in
the area of Mechanism Design for computing systems. Devising algo-
rithms capable of providing efficient and fair allocation is the objective
of many previous research efforts. Usually, the mechanisms they propose
use payments in order to deal with selfishness. Since using payments
is undesirable in some contexts, a family of mechanisms without pay-
ments is proposed in this paper. These mechanisms extend the Linking
Mechanism of Jackson and Sonnenschein introducing a generic concept
of fairness with correlated preferences. We prove that these mechanisms
have good incentive, fairness, and efficiency properties. To conclude, we
provide an algorithm, based on the mechanisms, that could be used in
practical computing environments.

Key words: Linking Mechanism, Fairness, Resource Allocation

1 Introduction

The success of the Internet has made the problem of resource allocation to emerge
in many versions like, for example, deciding which peer must receive bandwidth
or disk in a file sharing P2P system [1], or deciding to which computational
task some CPU is assigned in a collaborative distributed environment [2]. The
problem may also appear with a negative formulation (i.e., instead of deciding
who shall receive a resource, the problem is deciding who shall not receive it).

In all these scenarios, it is very important to conceive mechanisms that
achieve efficient and fair resource allocation even when players present selfish
or non-rational behavior. With that purpose, a number of interesting protocols
and mechanisms based on Game Theory concepts [3, 4] have been proposed. In
such works, it is often assumed that players can transfer their utilities (i.e., use
payments). However, there are many systems in which this assumption is not
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realistic. Recently, some mechanisms without payments have been proposed, like
those of Procaccia and Tennenholtz [5], or the seminal work of Jackson and Son-
nenschein [6, 7] in which a new type of mechanism (called Linking Mechanism)
is proposed. A Linking Mechanism, instead of offering incentives or payments
to players, limits the spectrum of players’ responses to a probability distribu-
tion known by the game designer. The objective of this paper is to explore and
extend Linking Mechanisms, introducing a wide spectrum of fairness concepts,
while preserving all the original properties.

State of the Art. Mechanism Design has been gaining increasing popularity in
distributed computing during the last few years (see, e.g., [8–10]). Even though
the mechanisms proposed in these works are interesting, they are usually based
on payment systems. Deploying such payment system in practice is often diffi-
cult. For this reason, mechanisms without payments have also been proposed.
Related literature could be found in economics on cooperation [11, 12] or sim-
ilar problems in P2P systems such as reputation [13] and artificial currencies
[14]. The work closest to our own, and in which we have based our proposal, is
the Linking Mechanism proposed by Jackson and Sonnenschein [6, 7]. Related to
this work, Engelmann and Grimm [15] presents experimental research on linking
mechanisms. An algorithm called QPQ (Quid Pro Quo) [16] has been proposed
as an application of this kind of mechanisms to distribute task executions fairly
among independent players.

QPQ reflects the main idea behind the concept of linking mechanism: when
a game consists of multiple instances of the same basic decision problem (e.g.,
saying yes or no, choosing among a number of discrete options), it is possible to
define selfishness-resistant algorithms by restricting the players’ responses to a
given distribution. Hence, in that case, the frequency with which a player declares
a particular decision is established beforehand. Based on this, QPQ presents
quite relevant features as the fact of not requiring payments, the flexibility on the
definitions of the utility functions of the players, its applicability in iterative (i.e.
repeated) games, the lack of central control authority, etc. While QPQ presents
some very interesting properties, it only guarantees fairness and efficiency when
users behave independently on each other. Nevertheless, this does not need to
be the case in real environments, where users may have correlated preferences.
The problem of fairness among players has been widely analyzed in the game
theory literature and a wide range of fairness concept has been proposed, but, as
far as we know, there is no fair linking mechanisms when players have correlated
preferences. This motivates the research proposed in this paper.

Contributions. Our contributions are twofold. On the one hand, we have ex-
tended the idea of Linking Mechanism introducing fairness, while preserving
desirable properties, like efficiency, truthful reporting, incentive compatibility,
etc. On the other hand, we propose an algorithm based on these mechanisms
that we expect to be used in practical scenarios.

In our model, fairness is a key element introduced to compensate current
sacrifices in future iterations. Due to the large number of notions of fairness
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that could be defined, it is difficult to find a general model that encompasses
any approach. Fairness is, in general, an elusive concept that can be seen from
many different perspectives. In this work we have proposed a generic fairness
definition, which we hope will serve as a reference to wider models. Hence, our
contribution is clear: to the best of our knowledge, no other previous research
work has offered a linking mechanism providing fair and efficient decisions.

In addition, from a theoretical perspective, we contribute to the progress of
the state-of-the-art by proposing a mathematical framework suitable for proving
all claimed algorithmic properties. This framework is inspired on previous work
on theoretical economics but, as far as we know, it has never been adapted
to the specific peculiarities of distributed computing (at least not to solve the
resource allocation problem). This technique has proven to be extremely powerful
for our specific problem, but it can be re-used in other scenarios with similar
assumptions.

Based on the theoretical results, we propose a realization of the mechanism
suitable for being implemented as an iterative game in real distributed environ-
ments. Unlike in the original linking mechanism, this algorithm does not need
to know the probability distribution of the players’ responses. We show that this
realization does not require central entities and that its computational cost is
affordable for current state of the art networks and devices. In addition, through
simulations, we confirm the stability of the algorithm demonstrating that few
iterations on a repeated game are enough for making the mechanism to converge
to a fair equilibrium even when the players’ distributions are strongly correlated.

To illustrate the application of this mechanism in a real environment, consider
a P2P system used for computation to which requests arrive continuously. When
a request arrives, the computational cost of processing it at a given node of the
system will depend on the load of the node. Our mechanism could be used to
enforce that all nodes process the same proportion of requests, while the total
computational cost is minimized.

2 Model and Definitions

We start by presenting the usual mathematical framework for mechanism design
and then we formally define the specific problem we face in this paper.

Mechanism Design Concepts. The following provides the usual theoretic frame-
work that will be later applied to our problem. We assume that there are n
players. The set of players is N = {1, 2, . . . , n}. Players are risk-neutral. The
alternative or outcome set of the game played is D. In a general setting, D could
be defined over ∆(N)4, but in this paper we define D = N so that the outcome
d ∈ D is the player to whom the resource will be allocated.

Prior to making the collective choice in the game, each player privately ob-
serves her preferences over the alternatives in D. This is modeled by assuming

4 We denote by ∆(S) the set of all probability distribution over some set S.
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that player i privately observes a parameter or signal θi that determines her
preferences. (For instance, in resource allocation, θi could represent the value
player i assigns to the resource.) For a given player i, we say that θi is the player
type. The set of possible types of player i is Θi. We denote by θ = (θ1, θ2, . . . , θn)
the vector of player types. The set of all possible vectors is Θ = Θ1×Θ2× . . . Θn.
We denote by θ−i the vector obtained by removing θi from θ.

We denote by Π = ∆(Θ) the set of all probability distributions over Θ. It is
assumed that there is a common prior distribution π ∈ Π that is shared by all
the players. We denote by πi ∈ ∆(Θi) the marginal probability of θi. We define
βi(θ−i|θi) as the conditional probability distribution of θ−i given θi. That is, for
any possible type θi ∈ Θi , βi(·|θi) specifies a probability distribution over the
set Θ−i representing what player i would believe about the types of the other
players if her own type were θi. Beliefs (βi)i∈N are consistent, since individual
belief functions βi can all be derived from the common prior π. This implies that
π(θ−i|θi) = βi(θ−i|θi).

Individual players have preferences over outcomes, which are represented by
a utility function ui(d, θi) ∈ R defined over all d ∈ D and θi ∈ Θi.

The set of outcomes D, the set of players N , the type sets in Θ, the common
prior distribution π ∈ Π, and the payoff functions ui, i ∈ N are assumed to be
common knowledge among all the players. The game rules defined by a specific
mechanism are also common knowledge. However, the specific value θi observed
by player i is private information of player i.

A strategy for the player i is any map σi : Θi → ∆(Θi), where σi(θ̂i|θi) is

the conditional probability that the player reports θ̂i when her true type is θi. A
reporting strategy σi is truthful if for every pair (θ̂i, θi), σi(θ̂i|θi) = 1 if θ̂i = θi
and 0 otherwise. As usually done, we will use θ̂i to denote the reported type and
θi the actual type.

Given that the prior distribution π is known, player i can not change it.
Hence, we say that a player i has a limited strategy space, since her strategy can
not change the beliefs of other players. Intuitively, player i has a limited strategy
space if beliefs over reports are the same as actual beliefs.

For a given Bayesian mechanism 〈Θ, g〉 we shall write qi(·|θi) for player i’s
interim probability density function on D conditional on player i’s type being
θi.

In this paper, we are looking for a mechanism 〈Θ, g〉, where g(·) is the decision
function, without utility transfers (payments) and that implements some social
choice function f under some equilibrium when the induced game is Bayesian.
In addition, we introduce fairness as a key tool to compensate or reward players.
We call this kind of mechanisms as Quid Pro Quo Mechanisms (QPQ).

Fairness. In our model, we use fairness as a very abstract concept. For us, fair-
ness is the property of balancing in expectation some game parameters (mod-
elled with a real function) among all players. Our model was originally built
with two examples in mind: fairness in utility (“players have same expected
utility”) and fairness in assignment (“same expected number of assignments”).
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But these two examples are just special cases of our model. Additionally, we
have contemplated the possibility that some scenarios require allocations other
than equiproportional; or than the game must be constrained to several fairness
concepts at the same time. All of this is modelled introducing a set of functions
ηi,l : θ → R and ratios δi,l, all defined for each player i ∈ N and for each fairness
concept l = 1, · · · ,m (m is the number of fairness concepts). The function ηi,l
represents a fairness concept. For instance, for fairness in assignment this func-
tion could be defined as ηi,l(θ) = 1. Similarly, fairness in utility is applied when
ηi,l(θ) = θi. On the other hand, δi,l is the ratio for player i when fairness l is
applied. Typically, this ratio is δi,l = 1

n . Then, formally, our concept of fairness
is defined as follows.

Definition 1 (Fairness) Given functions ηi,l : Θ → R, and values δi,l, we say
that a mechanism 〈Θ, g〉 is fair (or η-fair) when, for all i ∈ N and l = 1, · · · ,m,∫

Θ

ηi,l(θ)qi(θ) dπ(θ) = δi,l
∑
j∈N

∫
Θ

ηj,l(θ)qj(θ) dπ(θ) (1)

In this paper, we deal mathematically with this general concept of fairness,
but for the algorithm and simulations we used a particular concept of fairness,
where players will have equal number of allocated resources (in expectation).

Resource Allocation Problem. We now formally define the problem we study in
this work. Intuitively, the problem is like a repeated single-unit auction, where
the mechanism that decides how to allocate the resource in each auction is a
QPQ mechanism. Hence there are no payments and the allocation must satisfy
a notion of fairness.

The problem of resource allocation is a tuple 〈R,N,Θ〉 where, N and Θ
are as defined above, and R = {r1, r2, . . .} is the ordered set of resources that
have to be allocated by the system over time. Resources are received by the
system in their order in R, they are independent among them, and the system
must allocate resource rk to a single player before receiving resource rk+1. R is
assumed to be infinite.

As was mentioned previously, in this problem the outcome set is D = N ,
where an outcome of d ∈ D for resource rk means that rk is allocated to player d.
In [16], we have proposed a QPQ algorithm that implements this function when
the type of players follow mutually independent distributions. As in that work,
we assume here that the type of each player is normalized using a Probability
Integral Transform (PIT), so that it takes real values in the interval [0, 1] and
follows a uniform distribution within that support. Hence, we assume that Θi =
[0, 1]. Finally, as mentioned, we assume that players have a limited space strategy
(i.e., π is known a priori and cannot be changed by the players).

The social choice function (scf) g(·) we are looking for is one that optimizes
the social utility restricted by fairness conditions. The social choice function
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must be the solution to the following equation,

max
g

{∑
i∈N

∫
Θ
ui(d(θ), θi) qi(θ) dπ(θ)

}
s.t.,∫
Θ
ηi,l(θ)qi(θ) dπ(θ) = δi,l

∑
j∈N

∫
Θ
ηj,l(θ)qj(θ) dπ(θ), l = 1, · · · ,m

(2)

As an example, we study the fairness concept where each player i will receive a
proportional number of resources δi. Hence, we obtain that the scf is the solution
of the following equation.

max
g
{
∑
i∈N

∫
Θ

ui(d, θi) qj(θ) dπ(θ)}

s.t.∫
Θ

qj(θ) dπ(θ) = δi,∀i ∈ N.

(3)

Another fairness concept that we study as an instance of this framework is
players with proportional utility. Under this fairness concept every player will
obtain a proportional expected utility. The equations are similar in this case.

max
g
{
∑
i∈N

∫
Θ

ui(d, θi) qj(θ) dπ(θ)}

s.t.∫
Θ

ui(d, θi) qj(θ) dπ(θ) = δi
∑
j∈N

∫
Θ

uj(d, θj) qj(θ) dπ(θ),∀i ∈ N.

(4)

Without loss of generality, we can define the utility of a player i as follows,

ui(d, θi) =

{
θi if d = i,

0 otherwise.
(5)

In this paper, we are interested in dynamic mechanisms where truth-telling
is a Bayesian equilibrium of the static QPQ mechanism. In that case we call
the QPQ mechanism Bayesian incentive compatible. That means that a player
obtains a higher utility when reporting truthfully.

3 The Fair Quid Pro Quo Mechanism

With the above definitions, we now derive QPQ Mechanisms that implement the
social choice functions given by Eq. 3 and Eq. 4 under equilibrium, as special
cases of the solution to Eq. 2.
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Theorem 1 The QPQ Mechanism that implements the social function 2 with
η-fairness is a set of functions ψ = (ψ1, · · ·ψn) that defines a line y = ψi(x) for
each player i with deterministic assignment d = gψ(θ) = argmax

i∈N
(ψi(θ)) (except

at some points where the decision is indifferent).

Proof. The problem we aim to solve is to find the decision function g that max-
imizes ∫

Θ

∑
i∈N

θi qi(θ) dπ(θ) (6)

under the constraints given in eqn. 2. Using Lagrange multipliers, this is tanta-
mount to maximizing the functional

F [q] ≡
∫
Θ

∑
i∈N

θi qi(θ) dπ(θ)+
∑
k∈N

m∑
l=1

λk,l

∫
Θ

ηk,l(θ)qk(θ)− δk,l
∑
j∈N

ηj,l(θ) qj(θ)

 dπ(θ),

(7)
which can be rewritten

F [q] =

∫
Θ

∑
i∈N

ψi(θ)qi(θ) dπ(θ), (8)

where

ψi(θ) ≡ θi +

m∑
l=1

λi,l ηi,l(θ)−
∑
k∈N

m∑
l=1

λk,l δk,l ηi,l(θ). (9)

Since 0 ≤ qi(θ) ≤ 1 and
∑
i∈N qi(θ) = 1 for all θ ∈ Θ, then for each θ ∈ Θ,∑
i∈N

ψi(θ)qi(θ) ≤ ψj(θ) (10)

if j ∈ N is such that ψj(θ) > ψk(θ) for all k 6= j. The upper bound is reached
if, and only if, for that value of θ we have qj(θ) = 1 and qk(θ) = 0 for all k 6= j.

If, on the other hand, j1, . . . , jr are such that ψj1(θ) = · · · = ψjr (θ) > ψk(θ)
for all k 6= j1, . . . , jr, then the upper bound is ψj1(θ), but this time is reached for
any choice of the functions qi(θ) such that qj1(θ)+ · · ·+qjr (θ) = 1 and qk(θ) = 0
for all k 6= j1, . . . , jr. ut

For convenience, we build the decision function of our mechanism introducing
a transformation function ψ : Θ → Rn that returns a vector of n real values.
The decision function is then obtained as d = g(θ) = gψ = argmax

i∈N
(ψi(θ)).

We say that ψ determines the “decision rule” or “decision function”. Our main
theorem give us insight into what can we expect about the set of functions ψ.
Given our definition of ψi(θ) we can derive some intuition about the decision
function. The theorem tells us that we can restrict our attention to deterministic
solutions except when ψi(θ) = ψj(θ), i, j ∈ N . At these points, the decision is
indifferent. The above theorem also gives us an optimality result.
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Corollary 2 Assume that all players are honest, mechanism M defined using
the decision function d = argmax

i∈N
(ψi(θ)) maximizes the utility of the system

subject to fairness constraints.

Finally, when fairness is symmetric in the sense that each player has the
same fairness function, then each ψi depends only on the player’s profile θi and
therefore ψi(θi, θ−i) could be reduced to ψi(θi). This last aspect allows us to
state the following corollary.

Corollary 3 When fairness is symmetric in the sense of ηi(θ) = η(θi) ∀i ∈ N ,
and players have limited space strategy, then the probability qi depends only on
the player’s value, that is qi(θ) = qi(θi).

Proof. The proof follows from the definition of ψi(θ) and therefore the decision
function could be reduced to d = argmax

i∈N
(ψi(θi)). As beliefs can not be changed

by the strategy of others players, the probability qi(θ) is only defined as a func-
tion of θi. ut

Revisiting our particular cases of fairness defined as equal-number of re-
sources (Eq. 3) and equal number of utility (Eq. 4) we can check that the
solutions for ψ are in both cases straight lines. When fairness is defined as
equal-number of resources (Eq. 3), ψi(θ) becomes

ψi(θ) ≡ θi + λi −
∑n
k=1 λkδk, (11)

and therefore ψ(θi) = θi + λi −
∑n
k=1 λkδk.

This solution has a very nice property that was already observed in our
original work (QPQ with independent players). The mechanism designer could
aggregate players when studying a single player. The mechanism designer can see
the game as player i against the system formed by all other players (j ∈ N, j 6= i).
In this case, player i has to compute just two values for λ, her own value λi and
the aggregate value λj =

∑n
k=1 λkδk. That is: ψ(θi) = θi + λi − λj , or even

simpler: ψ(θi) = θi + λ. if we redefine λ as a new single real parameter that
represents λi −

∑n
k=1 λkδk.

This confirms that the decision function is a straight line where the parameter
λ determines the point at which the line crosses the y-axis. And this is true for
all players.

On the other hand, when fairness is defined as a function of utility (Eq. 4),
our ψ function could be defined using

ψi(θ) ≡ θi (1 + λi −
∑n
k=1 λkδk), (12)

and therefore ψ(θi) = θi (1 + λi −
∑n
k=1 λkδk).

Again, the decision function is a straight line where λ determines the slope.
Aggregating players, the above solution could be reduced to ψ(θi) = (1 + λi −
1
nλj), or ψ(θi) = λ θi.
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Properties. The Fair QPQ Mechanism with Correlated players (Mfair) has the
following properties:

1. Mfair is (ex-ante) individual-rational. This means that the expected util-
ity of a player is at least its expected outside utility.

2. Mfair is not allocative-efficient, but assign tasks efficiently subject to
equal number of tasks for each player. This property is a clear conclusion
from Corollary 2.

3. There is no incentive for any of the players to lie about or hide their pri-
vate information from the other players. Players will report truthfully in a
Bayesian equilibrium. We said that Mfair is Bayesian incentive compatible.
This property prevents selfish players from obtaining a benefit by misbehav-
ing.

The two first properties are quite evident. The last property follows from
Theorem 4.

Theorem 4 When players have limited space strategy, and fairness is symmet-
ric in the sense that ηi(θ) = η(θi) ∀i ∈ N , then Mfair is Bayesian incentive
compatible.

Proof. For the sake of contradiction, let us suppose this proposition is false.
Hence, there is some set of assignments for which, if i is not honest, she will
obtain more utility in expectation.

From Corollary 3, this holds for any strategy of the aggregate player j, and
in particular when all its players are honest. Hence, we can consider in the rest
of the proof that the rest of n− 1 players behave honestly.

Additionally, using the same corollary, we know that every player, j 6= i ∈ N ,
will obtain the same expected utility (independently whether i lies or not),∫

Θ

uj(d, θj) qj(θ) dπ(θ) =

∫
Θ

uj(d, θj) q̂j(θ) dπ̂(θ)

Now we can define a new mechanism M that assigns a task to player i
(when i is honest and declares θi) with the same probability as the original QPQ

assigns the task to the player i when she declares a false value θ̂i. Then, qi(θi) =

q̂i(θ̂). Note this new mechanism conserves the same fairness constraints as the
original one. However, if the above were true, QPQ would not be optimal, since
a mechanism that reproduces the same decisions under i lying (in presence of
honest players) would different (lower) utility. Clearly, this is in contradiction of
optimality of QPQ. Therefore, the best strategy for a player (the one optimizing
her normalized utility) is to be honest. ut

4 Practical QPQ Algorithm

After describing the different ingredients of our solution, we are able to propose
an application of our mechanism. Due to space restrictions, we will only discuss
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an algorithm for a particular case. We propose an algorithm where the resource
allocation achieves fairness in the number of resources allocated to each player.
This algorithm could be extended to other fairness concepts. The details can be
observed in Algorithm 1.

Algorithm 1 QPQ Correlated mechanism (code for node i)

1: Estimate the preference θi
2: Publish the normalized value θ̄i = PIT (θi)
3: Wait to receive the normalized values θ̄j from the other players
4: for all j ∈ N do
5: if not GoF Test(θ̄j ,Historic) then
6: θ̄j ← Random(θ̄−j ,Historic)
7: end if
8: end for
9: Historic ← Historic ∪ {θ̄}

10: Let d = argmax
j∈N

{ψj(θ̄j)}

11: if d = i then
12: Resource is assigned to node i
13: end if
14: Update λj ,∀j ∈ N : λk+1,j = λk,j + εk(Tk,j − 1/n).

In the algorithm, Tk,j denotes the percentage of decisions assigned to player j,
computed at round k. As it can be observed, for each round, each player estimates
her own value and publishes it. Publication means broadcasting a message with
the value to all players (although any other means of distribution, like shared
memory, can be used). By assumption, a player sends its value before it receives
any of the others (concurrency, which implies that they do not depend from each
other), and all of the values are correctly received at each player (reliability).
Then, the algorithm assigns the resource to the player that publishes the highest
value modified by a particular ψk.

Acceptance Test. We are assuming that players are reporting values using a uni-
form distribution. If their original distribution is not the uniform, we apply here
the same normalization transformation proposed in [16] based on the Probability
Integral Transform (PIT). Given the properties of the PIT, the idea is that any
player applying correctly the PIT on her real type distribution, must generate
a uniform distribution on the unit interval on her published normalized values.
Hence, from the point of view of the mechanism designer, the problem consists
on determining whether these published values follow or not that uniform dis-
tribution. There are a wide range of tests that allow checking that. These tests
are called Goodness-of-Fit or GoF tests.

Continuing with this argument, we propose to implement the acceptance test
of our algorithm by using some GoF test on the declared transformed sequence of
values published by the player. Whenever a player is honest and she declares the
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values by applying the PIT transformation on her own distribution, these values
will be uniformly distributed in the unit interval. In that case (with high proba-
bility) the GoF tests will accept the samples. More importantly, this process has
an error which tends to zero when the number of samples (rounds) increases for
any reasonable value of the threshold. For the study of our analytical results, we
assume that GoF tests are perfect and this error is zero.

A tremendous amount of GoF tests have been proposed in the scientific
literature. We propose to use the Kolmogorov-Smirnov (KS) test [17, 18] test as
the GoF test of QPQ. In contrast to our previous work with independent players
[16], in this case it is necessary to add a second test. The goal for this new test
is to check if a player is trying to modify the joint distribution. For our work, we
have used the “Copula” R-Cran package. We note that no approach is always
the best.

Punishment. In the case that a dishonest player tried to lie, one possible strategy
is to generate increasing θ̂ values, so that the PIT transformed values are close
to the unit. However, this type of behavior is quickly detected by the test. In
that case, the question is how to establish a punishment. Inspired on previous
works on linking mechanisms, the proposal is to reject the value declared by the
player and generate a new random value according to the join prior distribution.

Practical computation of λ. The above solution reduces the problem to finding
the value of λ that adjusts the tasks performed by players. In principle, we can
ask the players to declare the joint distribution and calculate that parameter
accordingly. But in general, we should not expect to find an analytical equation.
That is, it is possible that π does not have an analytical expression, or even if
it exists, players must estimate it empirically. There are multiple methods for π
estimation, both parametric and nonparametric. The major difficulty with these
systems is the convergence speed making it necessary a large number of samples.
There is a relationship between the dimension of the feature and the number of
samples needed. In our case, the dimension would be given by the number of
players. Fortunately, each player can compute the QPQ mechanism using just
only two dimensions (itself and the aggregate system).

However, players do not need to know the joint density function π, they only
need to know the function T (·) that indicates the number of tasks performed
given a parameter λ. We denote by T (λ) the number of tasks that run the player
when the decision value ψ is determined by the parameter λ. Again, we can not
expect an analytic form for T . But under the right assumptions, we can approx-
imate λ using stochastic approximation methods. Due to the characteristics of
the transformation function and noting how it influences the number of tasks, we
can expect that the function T (λ) is continuous and decreasing (or increasing in
the direction of λ). That is, there is always a value of λ for each percentage of de-
sired tasks. Our proposal is to approximate λ by a sequence λ0, λ1, λ2, λ3, · · · → λ
constructed using a stochastic approximation method. The best known method
is perhaps the Robbins-Monro method [19] although not the only one. Then, our
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algorithm must compute, for each iteration k,

λk+1 = λk + εk(Tk − 1/n). (13)

Where Tk is an estimation of the average number of tasks performed by the player
and where εk is a sequence of values that satisfies εk > 0, εk → 0,

∑
k εk = ∞.

Note that, in order to estimate Tk we don’t need to store previous samples and
memory consumption is low.

Simulations. By performing simulations, we have checked various aspects of our
proposal. Mainly, we wondered how Robbins-Monro algorithm performs in time.
We have simulated several alternatives for the generation of the sequence of
values εk. In our simulation we have used two methods: εk = 1/k and εk =

1
log(k)+k . The first one is the original proposal of Robbins-Monro’s work. With

this sequence, our experiments produce some oscillations in the λ estimation and
the speed of convergence was far from ideal. We found better results with the
second approach. Figure 1 presents an experiment with three players, the first
two are correlated and the third one is independent. Without our algorithm, the
independent player will obtain less utility than the two other players. On the
other hand, with our proposal, fairness is achieved and every player will have a
proportional number of assignments.
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Fig. 1. Evolution of work ratio (number of tasks) with QPQ.

5 Conclusions and Future Work

In this paper we have created a novel scheme capable of providing efficient re-
source allocation in distributed systems even in the presence of selfish correlated
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players. We have shown that, for a general notion of fairness, the mechanism can
be proved to perform efficiently and to maintain the incentive of players to par-
ticipate. In addition, we have proposed a specific realization of the mechanism
as an algorithm implementable in real distributed environments with affordable
computational and communication costs. This algorithm is susceptible of be-
ing used in repeated task allocations given that our simulations demonstrate its
rapid convergence, which open new horizons for systems based on open systems
for distributed collaborative tasks execution.

Despite this, the authors consider necessary to extend the current research in
several directions. First, the model requires knowledge on the number of players
that participate. We may find scenarios where this is not reasonable, e.g., sce-
narios in which several players “hide” and play the game with a single identity,
which may resulting on the mechanism not achieving fairness. Second, it would
be important to analyze the problem when more flexible space strategies are
possible. One of our main assumptions has been to consider that correlations
are fixed and that players are not able to alter them through their strategies.
This assumption is reasonable when information is private and the mechanism
is designed in such a way that players cannot make their declared (true or false)
values on an iteration dependent on the values of others at the same iteration.
However, there are many real-live scenarios where players may be able to share
their values making more complex interdependent strategies possible. This would
break the properties of our proposed algorithm.
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