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Abstract—Dense deployment of small cells is an important,
emerging trend to enable future cellular networks to cope with
growing traffic demand. However, this reduces the number of
users per cell and thus opportunistic scheduling gain. We propose
a base station-driven energy-aware approach to exploit user-user
communication to increase the opportunistic gain. We use tools
from stochastic Lyapunov optimization to determine the optimal
scheduling policy subject to a constraint on energy consumption
for user-user communication. Our simulation results show that
with a large energy budget, packet transfer delay is reduced by
up to 70%. The bulk of the performance improvement can be
achieved with only a small increase in energy consumption, where
60% of the improvement is achieved at only 20% of the additional
energy consumption. Further, we evaluate our algorithm using
realistic video traffic traces and show that frame loss ratio is
reduced by 90% and PSNR is improved by 4dB.

I. INTRODUCTION

Opportunistic scheduling [1, 2] was proposed for multiuser
wireless networks and has been widely adopted in practical
cellular systems [3, 4]. An opportunistic scheduler exploits
the time-varying channels between the base station (BS) and
users, to improve the overall system performance.

In this paper, we consider a setting where a BS serves a
set of users with stochastic traffic loads, similar to [5–10]. In
such a scenario, the BS at times has no data to transmit to
some users and multi-user diversity is reduced. This does not
affect performance in large cells (with large user populations)
since opportunistic gain scales as a concave function of the
number of available users. However, as smaller and smaller
cells are deployed more and more densely to increase wireless
capacity and meet increasing traffic demands [11–13], the
average number of users in a cell will decrease significantly
and a time-varying user population may greatly affect the
performance of opportunistic scheduling.

We propose a BS-drIven Traffic Spreading (BITS) algorithm
that can increase the opportunistic scheduling gain in small
cells. We consider downlink communication that accounts for
most of the traffic in a cellular network [14]. The BITS
algorithm benefits applications whose performance is sensitive
to delay (distribution) of received packets. Such delay-sensitive
applications include live streaming, video-conferencing, etc.
For instance, in live streaming the video frames which arrive
late will be dropped by the video player at the user, thus
reducing video quality.

To exploit the user-user communication, BITS leverages the
multiple radio interfaces (e.g., 3G, WiFi) available in most

smartphones. The criteria used by BITS are the users’ current
channel conditions and queue backlogs. Each user measures
its perceived channels to other users and shares channel infor-
mation with the BS. BITS takes into account users’ backlogs
as well as the BS-user and user-user channels, to maximize
its scheduling options and hence increase opportunistic gain.

To illustrate the traffic spreading mechanism of BITS, let
us consider the example shown in Fig. 1, where two users (U1

and U2) are served by a BS. The queues Q1 and Q2 depict
the number of packets waiting to be sent to each user. The
users perceive similar channel statistics and have similar traffic
loads. During each time slot, BITS determines from which
queue packets are served and to which user packets are sent
(i.e., when and how to spread traffic). In Fig. 1 (a), the queues
are balanced. From Little’s law, the average packet delays of
Q1 and Q2 are similar (below/above the delay threshold of
user’s player). Thus traffic spreading is not beneficial and BITS
sends packets to the corresponding users directly. In Fig. 1 (b),
there are more packets in Q2 than in Q1 which is nearly empty.
This implies the average packet delay of Q2 is higher than that
of Q1. Thus in the near future, (more and more) packets in
Q2 are likely to become useless when they arrive at the user.
BITS reacts to this imbalance in queues and if the channel of
U1 is better than U2, BITS sends packets from Q2 to U1, who
then forwards them to U2 through the user-user link.

Fig. 1: An example of BITS: (a) no spreading; (b) with spreading.

The proposed algorithm incurs additional energy consump-
tion due to forwarding traffic among users. As mobile devices
have limited energy resources, excessive traffic spreading can
result in high penalties in terms of energy consumption. At
the same time, balancing energy consumption among the
users is an important consideration. Our energy-aware BITS
algorithm optimizes the degree of spreading for a given energy
constraint.We summarize our main contributions as follows:

1) We propose an energy-aware scheduling policy (BITS)
to increase opportunistic gain by taking into account
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users’ backlogs and the BS-user and user-user channels.
2) We model the BITS policy with the objective to maxi-

mize delay-sensitive utility under an energy constraint.
Using stochastic Lyapunov optimization, we develop an
online algorithm and study its properties.

3) We evaluate BITS using realistic Rayleigh fading chan-
nels. Simulation results show that under BITS: i) utility
is increased greatly and average packet transfer delay is
reduced by up to 70% even in homogeneous scenarios;
ii) in the energy-constrained case (i.e., small energy
budget), significant gains (up to 60% of the gain) are
typically achieved at only 20% of the energy consump-
tion of performance-centric case (i.e., with a sufficiently
large energy budget); iii) excellent fairness on additional
energy consumption among users can be achieved in
heterogeneous scenarios; iv) the performance can be
improved greatly in scenarios where overall system
performance under the proportionally fair scheduling
policy used in current 3G and 4G systems is very poor.

4) We also evaluate BITS using realistic video traffic traces.
We provide results showing that with BITS, the average
Peak Signal-to-Noise Ratio (PSNR) of the received
video can be improved by up to 4dB and the frame loss
ratio is reduced by up to 90%. Moreover, the quality
of the received video varies much more slowly with
fluctuations of the wireless channel.

The rest of this paper is organized as follows: the related
work is summarized in Section II, followed by the system
model and stochastic Lyapunov optimization in Sections III
and IV, respectively. The properties of BITS are discussed in
Section V. Performance evaluation in a multi-channel system
and evaluation using realistic video traces are presented in
Section VI. Finally, conclusions and possible directions for
future work are provided in Section VII.

II. RELATED WORK

Many scheduling algorithms considering both users’ back-
logged queues and channel states have been proposed [7–9].
Among these, [7, 8] propose throughput-optimal MaxWeight
and Exponential rules, respectively. Authors in [9] propose the
log rule to improve delay performance. All these algorithms
react to imbalance in users’ queues by sacrificing opportunistic
gain in order to balance queues. In contrast, BITS can balance
users’ backlogs without losing instantaneous gain, by oppor-
tunistically exploiting the BS-user and user-user channels.

Another class of scheduling algorithms aims to maximize
delay/time-sensitive utility [15, 16], as BITS does. Among
these, [16] proposes to maximize delay-sensitive utility to
provide delay QoS for each user, while [15] aims to maximize
the time average utility to enforce fairness. Compared to our
work, the utilities in [15, 16] are defined as concave functions
of packet queueing delay, while the utility used in BITS (cf.
Section III) is a function of throughput, where throughput is
sensitive to packet delay.

Wang et al. [17] propose a downlink BS-transparent dis-
patching policy where users spread traffic requests among each

other to balance their backlogs. This increases the BS schedul-
ing options and hence improves the performance. Compared to
BITS, the dispatching policy is user-initiated and on a per-file
basis, while BITS is BS-driven and operates on a per-packet
basis. Further, the dynamic programming is used in [17] to
determine the optimal dispatching policy and the complexity
in large systems is reduced by aggregating users. In BITS,
the algorithm is derived from Lyapunov optimization and the
complexity is low even in large systems.

Another approach to exploit both the BS-user and user-user
channels is opportunistic relaying [10, 18–20]. Among these,
[18] proposes the idea of opportunistic relaying and an ap-
proach of choosing the best relay that maximizes the minimal
quality of BS-relay and relay-user channels. In [10, 19, 20]
mobile users themselves, instead of particular relay nodes are
used as relays. The work in [20] considers relaying traffic
to areas without cellular coverage and proposes an approach
where a user with the best channel to the destination is chosen
as the relay. Authors in [10, 19] propose scheduling algo-
rithms to improve the system capacity and fairness. Compared
to BITS, [18–20] assume users have infinitely backlogged
queues, which is different from BITS and [10] that consider
stochastic traffic loads. Moreover, the delay-sensitive utility
as well as delay-energy tradeoff have not been investigated in
neither [10] nor the other works discussed above.

III. SYSTEM MODEL

We consider a time-slotted system with N users attached
to a single BS, where the set of users is denoted as I =
{1, 2, ..., N}. The BS maintains a separate queue for each user,
and we denote by Q(t) ≡ (Qi(t), i ∈ I) ∈ NN , the number of
packets waiting to be sent to each user at slot t. Without loss of
generality, packet sizes are fixed. The number of packets that
can be sent during a slot depends on the modulation scheme.
The arrival rates of packets to the BS are modelled through the
vector λ(t) = {λi(t), i ∈ I} where λi(t) denotes the number
of packets that arrive to queue i during slot t and λi(t) can
be arbitrarily bursty. The arrival processes are assumed to be
independent across users.

Channel model: The channel is time-varying. The channel
instances of the BS-user channel at slot t are denoted as c(t) =
{ci(t), i ∈ I}, where ci(t) is the maximal number of packets
that can be sent to user i if the BS chooses to serve user i.
We assume the BS is aware of users’ channel states. The set
of all the possible channel instances is S = {c∗1, c∗2, · · · , c∗K}.

Scheduling policy: In each slot t, the BS scheduler decides
from which queue packets are served and to which user the
packets are sent. This decision takes into account current queue
states and channel states. The scheduling policy is defined
through a binary indicator, ∀i, j ∈ I and ∀t:

σji (t) =

{
1, if serving user j with packets from queue i
0, otherwise

The set of all the possible scheduling policies is defined as

C ≡
{
σ(t) :

∑
i∈I

∑
j∈I

σji (t) = 1, σji (t) ∈
{

0, 1
}}

.
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We assume packets in the same queue are served according
to a first-come-first-served discipline and the BS can only
serve one user during a slot. The departure rate νi(t) of queue
i can be written as

νi(t) =

{
min[Qi(t), cj(t)], if σji (t) = 1

0, otherwise
(1)

Finally, the queueing dynamics of the system are

Qi(t+ 1) = Qi(t)− νi(t)+λi(t), ∀i ∈ I,∀t. (2)

A. Delay-sensitive utility

Let M t
i (dx, dy) denote the number of packets received by

user i in slot t, with packet delay between dx and dy . For
each user i, let d∗i = {d∗i,l, l ∈ {1, 2, ..., L}} be the delay
thresholds that determine the utility of a packet. The delay-
sensitive utility of user i is defined as

φ(µi) = log(µi) = log

L−1∑
l=1

wli lim
t→∞

∑
tM

t
i (d
∗
i,l, d

∗
i,l+1)

t
(3)

where µi is the weighted average throughput, wi = {wli, l ∈
{1, 2, ...L−1}} is a weight vector. We use the non-decreasing
and concave logarithmic utility function to provide fairness
among users. The delay thresholds of different applications
may be different. For instance, in live streaming packets that
arrive late are dropped at the player and become useless. Under
this case, the weight vector can be modelled as wi = {1, 0}.
In other interactive applications such as gaming, the weights
can be modelled by quantizing packet delay and setting the
weights in a piecewise constant manner with respect to delay.

Performance metrics: The metrics we use are the delay-
sensitive utility and re-routing cost, i.e., the additional energy
consumption induced by traffic spreading. We define p∗ =
{p∗i , i ∈ I} as the energy budget per slot (i.e., power) and
p(t) = {pi(t), i ∈ I} as the re-routing cost in slot t, which
depends on the scheduling policy σ(t).

Our objective is to maximize the sum of users’ utilities,
subject to users’ energy budget:

max
σ(t)

∑
i∈I

φ(µi) (4)

s.t. pi ≤ p∗i , ∀i ∈ I
where φ(µi) is given in (3) and pi is the time average of pi(t)
of user i.

IV. STOCHASTIC LYAPUNOV OPTIMIZATION

We use stochastic Lyapunov optimization to solve the
problem given in (4). Since φ(·) is a concave function, we first
transform the above problem (with functions of time averages)
to a problem including only time averages, then use the drift-
plus-penalty framework proposed in [21] to solve it.

A. Problem transformation

The original problem (4) is transformed by adding a rect-
angle constraint and auxiliary variables. Define a rectangle
constraint R ≡ {(µ1, ..., µN ) ∈ RN |0 ≤ µi ≤ γmaxi , ∀i ∈ I}
where γmaxi is a finite constant. Further, denote by φ∗ the
maximum utility of problem (4), augmented with the constraint

R. For each slot t, denote by γ(t) = {γi(t), i ∈ I} a
vector of auxiliary variables within the rectangle constraint
set R and assume γi ≤ µi,∀i ∈ I, where γi is the average
of γi(t). According to [21], we can consider the following
transformed problem with only time averages instead of the
problem including functions of time averages in (4):

max
σ(t)

∑
i∈I

φ(γi) (5)

s.t. pi − p∗i ≤ 0, ∀i ∈ I (6)
γi ≤ µi, ∀i ∈ I (7)
γ(t) ∈ R, ∀t ∈ {0, 1, 2, ...} (8)

where φ(·) is the time average of the utility function φ(·).

B. Lyapunov optimization

We introduce two virtual queues Z(t) and G(t) as follows:

Zm(t+ 1) = max[Zm(t) + pm(t)− p∗m, 0], ∀m ∈ I (9)
Gs(t+ 1) = max[Gs(t) + γs(t)− µs(t), 0], ∀s ∈ I (10)

We assume Zm(0) = 0, Gs(0) = 0,∀m, s ∈ I. The pm(t)
and γs(t) in (9) and (10) can be viewed as arrival rates,
while p∗m and µs(t) as departure rates. If the queues Zm(t)
and Gs(t) are stable, i.e., limt→∞ E{Zm(t)}/t = 0 and
limt→∞ E{Gs(t)}/t = 0, then the constraints in (6) and (7)
can be satisfied [21]. Thus, to ensure that users’ additional
energy consumption ps is below the energy budget p∗s and the
auxiliary variable γm is within the rectangle constraint set R,
the virtual queues Zm(t) and Gs(t) have to be stable over
time. Therefore, define a quadratic Lyapunov function as:

L(Θ(t)) ≡ 1

2

[∑
i∈I

Qi(t)
2 +

∑
m∈I

Zm(t)2 +
∑
s∈I

Gs(t)
2

]
,

where Θ(t) ≡ [Q(t),Z(t),G(t)]. For any non-negative con-
stant V , define the one-slot Lyapunov drift-plus-penalty as

∆(Θ(t))− V E{φ(γ(t))} ≡E{L(Θ(t+ 1)) (11)
− L(Θ(t))} − V E{φ(γ(t))}

To solve the transformed problem (5)-(8), we only need to
minimize (11) in each slot [21]. The intuitions behind this are
i) by minimizing the drift ∆(Θ(t)), the virtual queues Zm(t)
and Gs(t) will be stable and thus the constraints in (6) and
(7) are satisfied; ii) similarly, (5) is solved by minimizing the
penalty−V E{φ(γ(t))}. This relationship is given by Theorem
1 presented in Sec. IV-D. For the property of the drift-plus-
penalty defined in (11), we have the following lemma:

Lemma 1: For all possible values of Θ(t) and under any
scheduling policy σ(t) ∈ C, the drift-plus-penalty has the
following upper bound for all slots t:

∆(Θ(t))− V E{φ(γ(t))|Θ(t)} ≤ D − V E{φ(γ(t))|Θ(t)}

+
∑
m∈I

Zm(t)E{(pm(t)− p∗m)|Θ(t)}

+
∑
s∈I

Gs(t)E{(γs(t)− µs(t))|Θ(t)}

+
∑
i∈I

Qi(t)E{(λi(t)− νi(t))|Θ(t)} (12)
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where D ≡ 1
2

∑
i∈I [(λi)

2 +(νi)
2]+ 1

2

∑
s∈I [(γs)

2 +(µs)
2]+

1
2

∑
m∈I [(pm)2 + (p∗m)2].
Proof: From the queueing dynamics (2), we have

Qi(t+ 1)2 −Qi(t)2 = (Qi(t)− νi(t) + λi(t))
2 −Qi(t)2

≤ νi(t)
2 + λi(t)

2 + 2Qi(t)(λi(t)− νi(t)), ∀i ∈ I
Similarly, we have

Zm(t+ 1)2 − Zm(t)2 ≤ pm(t)2 + (p∗m)2

+ 2Zm(t)(pm(t)− p∗m), ∀m ∈ I
Gs(t+ 1)2 −Gs(t)2 ≤ γs(t)

2 + µs(t)
2

+ 2Gs(t)(γs(t)− µs(t)), ∀s ∈ I
Taking conditional expectations of the above three equations
and summing over i,m, s ∈ I, we get a bound on ∆(Θ(t)).
The lemma is then proved by subtracting V E{φ(γ(t))|Θ(t)}
from both sides.

C. Proposed BITS Algorithm

The BITS algorithm seeks to minimize the upper bound of
(12) instead of directly minimizing the drift-plus-penalty itself.
As shown in Sec. IV-D, this does not affect the optimality of
the solution. The algorithm works as follows:

1) Auxiliary variables: Based on G(t), choose γ(t) in each
slot t such that the following function is maximized

max
γ(t)

V
∑
s∈I

φ(γs(t))−
∑
s∈I

Gs(t)γs(t) (13)

s.t. 0 ≤ γs(t) ≤ γmaxs , ∀s ∈ I (14)

Since the auxiliary variables γ(t) are independent, the above
maximization can be decoupled as maximizing V φ(γs(t)) −
Gs(t)γs(t),∀s ∈ I, subject to 0 ≤ γs(t) ≤ γmaxs . The peak
value of this objective function is obtained when γs(t) =
V/Gs(t) for Gs(t) > 0. Therefore, by taking into account
the constraint of γs(t) in (14), we have the following optimal
solution to the above problem:

γs(t) =

{
V

Gs(t)
, Gs(t) ≥ V

γmax
s

γmaxs , Gs(t) <
V

γmax
s

The value of Gs(t) directly affects the value of γs(t). If the
value of Gs(t) is small, this implies that the time average of
γs(t) is very close to that of µs(t), which enforces the stability
of virtual queue Gs(t). If the value of Gs(t) is large, then a
small γs(t) should be chosen to enforce queue stability. The
complexity of (13) is O(N).

2) Scheduling policy: Based on Q(t), d(t), G(t), Z(t) and
c(t), choose σ(t) ∈ C in each slot t to minimize∑

m∈I
Zm(t)pm(σ(t))−

∑
i∈I

Qi(t)νi(σ(t)) (15)

−
∑
s∈I

Gs(t)µs(σ(t))

The Zm(t), Qi(t) and Gs(t) in (15) can be interpreted as
the weights of re-routing cost, service rate and delay-sensitive
throughput, respectively. Under a large energy budget p∗i , the
value of Zm(t) is always equal to zero according to (9). Thus,
in each slot the scheduling policy is to balance the queuesQ(t)

and G(t) among users. Under a small energy budget, the value
of Zm(t) is no longer always equal to zero. The scheduling
policy starts to trade off between the opportunistic gain and
the re-routing energy cost. The complexity of this policy is
O(N2) because it chooses σ(t) ∈ C to minimize (15) in each
slot and there are N2 different σ(t).

3) Queue updates: Update the virtual queues Z(t) and G(t)
according to (9) and (10) and the γ(t),p(t) determined from
previous two steps. The queue Q(t) is updated according to
(2) and the scheduling decision σ(t).

D. Optimality analysis

To prove the optimality of BITS, we show that the difference
between the utility under BITS and the optimal utility can be
made arbitrarily small:

Theorem 1: Assume initially all the queues Q(t), Z(t) and
G(t) are empty. For a particular constant V > 0, the achieved
time-average utility under the BITS algorithm satisfies:

lim
t→∞

inf
∑
i∈I

φ(µi) ≥ φ∗ −
D

V
(16)

where φ∗ is the maximal achievable utility under all possible
scheduling policies σ(t) ∈ C.

Theorem 1 indicates that by increasing V , the utility under
BITS can be made arbitrary close to the optimal utility. Note
that a large V also results in large average backlogs of the
virtual queues Q(t) and Z(t). The theorem can be proved by
first proving the existence of a stationary queue-state-unaware
scheduling decision, followed by inserting the decision into
(12) to remove the dependence on Θ(t) in the expectations.
After that, the theorem can be proved by applying iteration
over time slots, using the property of Jensen’s inequality and
then by taking the limit (similar to the proof the Theorem 5.1
in [21]).

V. PROPERTY OF THE BITS SCHEDULING POLICY

In this section, we study the properties of BITS in a two-
user two-channel-state system. The channel is a Markovian
channel with on and off states. We consider a homogeneous
scenario where the transition probabilities of the BS-user link
are pion2on = pioff2off = 0.8; pion2off = pioff2on = 0.2,∀i ∈ I. The
packet size is fixed to 1. We assume one packet can be sent in
a slot (1ms) if the channel is on and zero packets is sent if the
channel is off. The arrivals are according to a Poisson process
with average arrival rates λ = {0.3, 0.3} packets/ms. For each
user i, the delay threshold vector d∗i = {0, 20,+∞}ms and
the weight wi = {1, 0}. The additional energy cost pi(t) is
1 mJ for re-routing one packet, ∀i ∈ I. For simplicity, here
we assume that the user-user link has no forwarding delay. (In
Section VI, however, forwarding delay is considered.)

Let hi denote the queueing delay of head-of-line packet of
Qi,∀i ∈ I. Further, we define the combined queue as follows:

Ui’s combined queue =

{
Qi +Gi, hi < d∗i
Qi, otherwise (17)

We show the scheduling decisions of BITS in Fig. 2 and 3.
The axes represent the lengths of combined queues and the
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figures depict scheduling decisions at each queue state (except
for Fig. 3(d)). To help distinguish between different scheduling
decisions, we draw the diagonal where the lengths of combined
queues are equal. We observe the following properties:

Instantaneous gain vs. queue balancing: BITS can exploit
instantaneous gain and/or balance queues based on current
channel states, packet delays, actual and virtual queue states.
Exploiting instantaneous gain is achieved by sending packets
that contribute the most to the utility, while balancing queues
aims to reduce the future number of packets that have no
contribution to the utility. We present this property in detail
by considering different combinations of channels states.

1) Both channels are on: There is no re-routing under this
case, i.e., BITS always serves users with their own packets.
Thus there are two scheduling decisions, i.e., to serve Q1 or
Q2, as shown in Fig. 2. We observe that the scheduling policies
are separated by the diagonal, which implies that BITS always
balances the combined queues. This can be derived from (15)
where pl(σ(t)) is always equal to zero, ∀l ∈ I. We can further
observe for different values of h1 and h2:
• h1, h2 < 20ms: as shown in Fig. 2 (a), BITS balances the

combined queues, aiming to keep in the future as many
packets that contribute to the utility as possible.

• h1 ≥ 20ms, h2 < 20ms: The head-of-line packet of Q1

under this case does not contribute to the utility, thus
from (17) we know U1’s combined queue is Q1. Again,
BITS algorithm balances the combined queues, i.e., Q1

and Q2 +G2, as shown in Fig. 2 (b). This implies even
Q2 is smaller than Q1, the policy may still serve U2 to
exploit instantaneous gain (note that G2 ≥ 0).

• h1 < 20ms & h2 ≥ 20ms: similar to the previous case.
• h1, h2 ≥ 20ms: The head-of-line packets of both users

do not contribute to the utility, thus BITS only balances
the actual queues Q1 and Q2, as shown in Fig. 2 (d).
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Fig. 2: Properties of BITS: both users’ channels are on.

2) One user’s channel is on, the other’s is off: Without loss
of generality, let us focus on the case where U1’s channel is on
and U2’s channel is off. Note that there is re-routing from Q2

to U1 if the energy budget permits. We depict the scheduling
decisions in Fig. 3 where we show the decisions when both
h1 and h2 are smaller than 20ms. Scheduling decisions under
other values of h1 and h2 are similar. We observe that under
large energy budget (e.g., p∗i = 1W·h (over a second),∀i ∈ I),
BITS still balances the combined queues. However, when the
energy budget decreases, BITS reacts less to the imbalance in
combined queues. We explain this in depth through another
property of BITS.
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(b) p∗i = 0.15 W·h, ∀i ∈ I
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Fig. 3: Properties of BITS: U1’s channel is on, U2’s channel is off,
h1 < 20ms and h2 < 20ms

Performance vs. energy consumption: The tradeoff be-
tween performance and energy consumption can be seen
clearly from Fig. 3. We depict the scheduling decisions when
both h1 and h2 are smaller than 20ms, U1’s channel is on
and U2’s channel is off. If BITS chooses to serve Q2, there
will be re-routing from Q2 to U1. Given a large energy
budget, e.g., p∗i = 1W·h, BITS behaves exactly the same as
in Fig. 2 (a), i.e., balancing combined queues. The re-routing
area (Q2 → U1) diminishes progressively with the decrease
of energy budget, as shown in Fig. 3 (a)-(c). This implies
that performance is sacrificed in order to reduce the energy
cost. When the energy budget is very small, re-routing only
occurs when the imbalance between users’ combined queues
is very large. Furthermore, from (15) we can derive that if the
difference between the combined queues of U2 and U1 at time
slot t is larger than the length of virtual queue Z1(t), BITS
will choose to send packets from Q2. Based on this derivation,
we depict the scheduling decisions in Fig. 3 (d) where the axes
are energy budget and length of Z1, respectively. In this figure,
the scheduling decision above the curve is re-routing from Q2

to U1, and below the curve is no re-routing. We observe clearly
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that the re-routing degree increases with the increase of energy
budget, which shows the tradeoff between performance and
energy consumption. Another very interesting observation is
that the chances of re-routing from Q2 to U1 can be increased
greatly with even a small increase in energy budget.

VI. PERFORMANCE EVALUATION

To evaluate BITS, we compare it with following policies:

1) Queue-unaware, proportionally fair scheduling (PF): At
any slot t, a PF scheduler chooses to serve the user i
with the maximum Ri(t)/R

′
i(t), where Ri(t) is Ui’s

instantaneous data rate and R′i(t) is the exponentially
smoothed average service rate of Ui [6].

2) Queue-aware, log rule scheduling: Queue-aware means
the scheduler is aware of the queue length. At time t,
a log rule scheduler makes decisions based on current
channel state and the logarithm of queue length [9].

3) Queue-aware, maximal re-routing (MaxRR): At time t,
a MaxRR scheduler chooses to serve user i that has
the largest instantaneous data rate with packets from the
longest queue. If the packets do not belong to user i,
they will be forwarded by user i to the corresponding
user through user-user link.

Note that among the above scheduling policies, re-routing only
occurs under MaxRR.

A. Simulation setup

BS-user link: Time is slotted and each slot lasts for 1ms.
The BS-user channel is a Rayleigh fading channel where the
Signal-to-Noise-Ratio (SNR) is assumed to be constant during
each slot. Other channel settings are listed in Table I (note that
the specific choice of parameters has no significant impact on
the fundamental tradeoff between performance improvement
and re-routing energy consumption). We adopt modulation
scheme to SNR according to the mechanism specified in [22].
The setting of the parameters in the PF and log rule scheduling
policies are taken from [6] and [9], respectively.

User-user link: The user-user channels are also Rayleigh
fading channels where the path loss exponent and Doppler
shift are set according to Table I. The bandwidth is 20MHz.
The durations of aSlotTime, SIFS and DIFS are 9µs, 10µs
and 28µs, respectively. The minimal and maximal contention
window are set to 15 and 1023, respectively. The RTS/CTS
mechanism is disabled. The lengths of PHY header, MAC
header and ACK are 192bits, 256bits and 304bits. The setting
of data rate with respect to SNR is according to [23].

TABLE I: CHANNEL PARAMETERS OF BS-USER LINK

Parameters Value
Bandwidth 5 MHz

BS Tx power 0.1/5 W/MHz
Noise spectral density 10−8/5 W/MHz

Path loss exponent (Urban Area) 3
Doppler shift (ITU Pedestrian A) 5 Hz

Two different types of delay thresholds (Type I and Type
II) are evaluated. In Type I, the thresholds and corresponding
weights are shown in Fig. 4 (a). Type I can represent a type of
applications where packets are dropped if their delays exceed
certain value, e.g., live video streaming. The relationship
between thresholds and the corresponding weights of Type
II is shown in Fig. 4 (b). Type II can represent a type of
interactive applications, e.g., gaming.
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Fig. 4: Delay thresholds and the corresponding weights.

Without loss of generality, the packet size is fixed to 175
bytes unless otherwise specified. We assume the additional
energy cost pi(t) for re-routing a packet is 1 mJ, ∀i ∈ I. The
constant V in (11) is set to 100. We assume during each slot,
M(t) ∈ Z+ packets are transmitted, depending on the value
of instantaneous SNR. In the simulation results, the values
of energy budget and energy consumption of users are given
within a second (i.e., power).

B. The two-user scenarios

Homogeneous scenarios: The simulation results are shown
in Fig. 5 (due to space limitation, the results under the Type II
threshold are not shown). The x-axes are energy consumption
while the y-axes are utility and average packet transfer delay,
respectively. The tradeoff between performance and energy
budget under BITS can be clearly seen in both Fig. 5 (a) and
(b). Note that the upper bound in Fig. 5 (a) is obtained by
assuming all the packets are transmitted without delay. Under
large energy budgets, the performance of BITS can be as good
as that under maximal re-routing. Compared to PF, the utility
can be increased by 1 under both BITS and MaxRR. The
average packet transfer delay with BITS can be reduced by
up to 72%. To provide further insights into these results, we
plot in Fig. 5 (c) the Cumulative Distribution Function (CDF)
of packet delay. We observe that under BITS (with a large
energy budget) and MaxRR, almost all packets are served with
a delay below 15ms, while under the log rule and PF, around
20% and 40% of the packets have delays exceeding 15ms.
Under small energy budget, the re-routing energy consumption
decreases rapidly along with the decrease of utility and the
increase of average packet transfer delay, as shown in Fig. 5
(a) and (b). Further, we observe that BITS is able to achieve
the same performance as MaxRR while consuming less energy
(65%). This is because BITS can optimize the degree of re-
routing under a specified energy budget. An another interesting
observation is that most of the performance gain under BITS
can be achieved at small increase in energy consumption, e.g.,
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70% of the utility gain can be achieved at only 30% of the
maximal energy consumption under BITS.
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Fig. 5: Two-user homogeneous scenario: the average SNRbs-user =
{9, 9}dB, SNRuser-user

ij = 9dB, λ = {2, 2}packets/ms, i 6= j.

The impact of arrival rates on the utility and delay per-
formance under Type II threshold is shown in Fig. 6, where
we scale λ while keeping other parameters unchanged. As
expected, the average transfer delay increases with the increase
of arrival rates, as indicated in Fig. 6 (b). We also observe
that when the arrival rates are low (e.g., 1.4 packets/ms),
the utilities of all the policies are almost the same. This is
because almost all the packets can be served with low queueing
delay at the BS. As the packet arrival rates increase, packet
queueing delays increase and more and more packets are going
to exceed the delay threshold. This is why the utilities of all
the scheduling policies first increase and then decrease with
the increase of packet arrival rate. However, since BITS and
MaxRR exploit the local user-user communication to spread
traffic, the utilities under these policies decrease much slower
than those under the log rule and PF. Note that for a large
energy budget, the performance of BITS is even better than
MaxRR while consuming less energy for re-routing. This is
because BITS is aware of the packet delays, and thus can make
better scheduling decisions than MaxRR.

Heterogeneous scenarios: Fig. 7 depicts the tradeoff be-
tween performance and energy consumption achieved by BITS
under a scenario where one user has a lower traffic load as
well as a worse average BS-user channel quality. The upper
bound also comes from the assumption as in the homogeneous
scenarios that all the packets are transmitted without delay.
The maximal utility and delay improvements under BITS
are 0.7 and 75%, respectively, compared to PF. When the
energy budget is large, the delay performance of BITS is
even better than MaxRR, while requiring only 65% of the
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Fig. 6: Two-user homogeneous scenarios with different arrival rates:
the average SNRbs-user = {9, 9}dB, SNRuses-user

ij = 9dB, i 6= j.

energy consumption. This is because BITS introduces less
additional delay than MaxRR, where the delay comes from
packet forwarding among users. Thus, in Fig. 7 (b) we can
observe that the average packet transfer delay under BITS
(with a large energy budget) is lower than that under MaxRR.
Similar to the homogeneous scenario, the re-routing energy
consumption reduces rapidly as the energy budget decreases,
while the performance decreases slowly.
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Fig. 7: Two-user heterogeneous scenario: the average SNRbs-user =
{10, 9}dB, SNRuses-user

ij = 9dB, λ = {2.2, 1.8}packets/ms.

The overall re-routing energy consumption as well as the
split between users under BITS is shown in Fig. 7 (c).
We observe that both of the two users contribute to the
performance improvement, i.e., even the user with a worse
channel (U2) forwards packets (thus consuming energy) to the
user that has a good channel (U1). Another observation is that
the re-routing energy consumption is always constrained by
the energy budget, as expected from the theoretical analysis.
Further, when energy budget is below 0.4W·h, the energy
consumptions of the two users are the same, both are equal
to the budget. This implies that BITS can balance the energy
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consumption among users when given the same energy budget
for the users. We also observe that when the energy budget is
equal to or above 0.4W·h, the re-routing energy consumption
of U1 is slightly higher than that of U2, while both of them
are below the energy budget. This is because the average
channel quality of U1 is better than that of U2, so U1 has
more opportunities to forward packets for U2. Since the energy
budget is large, BITS will exploit as much as possible these
opportunities to maximize the performance improvement.

C. Multi-user scenarios

Homogeneous scenarios (performance scaling with num-
ber of users): The scaling of the utility with the number
of users is shown in Fig. 8. Here, all users have the same
traffic load, and the sum of arrival rates across all users is
fixed to 4 packets/ms. The average SNRs of the BS-user and
user-user channels are the same. All users can communicate
with each other and each user has a sufficiently large energy
budget. An interesting observation from Fig. 8 (a) is that the
utility decreases when the number of users increases. Another
observation in Fig. 8 (a) is that the difference between utilities
under BITS and PF increases with an increasing number
of users. The reason behind this is as the user population
increases, the BS have more and more choices to spread traffic
among users. This can be seen more clearly from Fig. 8 (b)
where we fix the upper bound of the utility to 1 for all numbers
of users and depict the differences between the upper bound
and utilities under all the scheduling algorithms.
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Fig. 8: Homogeneous scenarios with different number of users: the
average SNRbs-user = {9, 9}dB, SNRuses-user

ij = 9dB, i 6= j.

Heterogeneous scenarios (users randomly distributed in
a cell): We present results where users are served by a BS
with a service range of 100m. We consider instances with four
users, all of them randomly distributed at distances ranging
from 50m to 100m to the BS (corresponding to average SNRs
between 19dB and 10dB). Note that if the channel between
two users is very poor, the scheduler will not spread traffic
among them. Users’ arrival rates are also heterogeneous and
the arrival rate for each user is chosen randomly in a range of
1.25 ± 10% packets/ms. We evaluate 100 instances for each
chosen re-routing energy budget. The average results as well
as the 95th and 5th percentile of the utility and average packet
transfer delay are shown in Fig. 9.

We observe that under BITS, average utility can be im-
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Fig. 9: Performance of BITS under four-user heterogeneous scenarios
where λi = 1.25± 10% packets/ms, i ∈ I.

proved by 0.4 and the average packet transfer delay can be
reduced by up to 50%, compared to PF. Even compared to
MaxRR, the delay under BITS can be improved by up to 35%
while having only half of the energy consumption. This is due
to the smart control of traffic spreading of BITS as well as the
large difference of channel conditions among users. Further,
from the 5th percentile of utility in Fig. 9 (a) we observe
that the utility can be increased by 1.3, and from the 95th

percentile of delay in Fig. 9 (b) that the average packet transfer
delay can be be reduced by around 55%. This demonstrate that
BITS is capable of significantly improving user performance in
instances where the overall system performance is poor under
PF (used in current 3G and 4G systems), which is a very
important practical consideration.

D. Simulation of live video streaming

Finally, we evaluate BITS using realistic traces of video
traffic. We consider a four user homogeneous scenario, where
the average SNRbs-user = {6, 6, 6, 6}dB and SNRuser-user

ij =
9dB, ∀i, j ∈ I. The other wireless settings are the same as
in the previous subsections. The video stream is a 50-second
soccer game (4CIF YUV video with 30 frames per second)
used in [24, 25]. The source YUV video is encoded into
single layer H.264 Advanced Video Coding (AVC) format
through the Joint Scalable Video Model (JSVM) software
[25]. The encoded video is then extracted and we use its
trace as the input to our simulation. We reproduce the H.264
AVC video based on the received trace, convert it to YUV
format and calculate its Peak Signal-to-Noise Ratio (PSNR)
with respect to the source of YUV video. Note that in the
video reproduction, if the delay of a frame exceeds 200ms,
we consider it lost and substitute it with the previous frame.
The metrics we use are the Y-PSNR of each frame and the
frame loss ratio of the received video.

Results are shown in Fig. 10. The Y-PSNR in Fig. 10 (a)
is averaged across all users over two second intervals. Fig. 10
(a) shows that under a large energy budget, BITS can achieve
performance as good as that of maximal re-routing, both of
which are not sensitive to channel fluctuations most of the
time (except at the beginning and several seconds around 25s
where the channels between all users and the BS are bad).
In contrast, the received PSNR under PF reacts greatly to the
channel fluctuations, which affects the quality of experience of
the users. Furthermore, we observe that with a lower energy
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Fig. 10: Performance of the BITS policy in the application of live video streaming.

budget, BITS still performs well and its PSNR changes much
more slowly than that under PF.

As for the average Y-PSNR, Fig. 10 (b) shows that it can
be improved by up to 4dB under the BITS algorithm. Similar
to previous scenarios, the gain decreases with, but not as fast
as, the decrease of energy budget. The frame loss ratio can be
reduced greatly under BITS as shown in Fig. 10 (c), e.g., up
to 90% when compared to both PF and the log rule.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a BS-driven traffic spreading
policy (BITS) to increase downlink user performance in small
cells, by exploiting both BS-user and user-user communica-
tion. We formulated the problem to maximize delay-sensitive
utility under a re-routing energy budget, and solved it through
stochastic Lyapunov optimization. We designed the BITS
algorithm, studied its properties and then evaluated it in a
range of scenarios. We found that BITS can greatly increase
the utility and reduce the average packet transfer delay, as
well as balance the additional energy consumption for traffic
spreading among users. Finally, we evaluated BITS with a
realistic video trace, and showed that it can increase the
average Y-PSNR of the received video and reduce the frame
loss ratio significantly. For future work, we plan to extend our
work by considering in-band user-user communication [26].
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