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Abstract—Building complex simulations is usually a challenge,
mainly due to the broad spectrum of concepts that must be
taken into account. Simulation middleware based on the IEEE
1516 standard tries to reduce this complexity, but there are
still aspects that hinder the implementation of such simulations.
The dependency between the source code and the corresponding
formal description of the model could be hard to verify and
maintain. Also, the code for the model simulation and the code
needed for the integration with the HLA/RTI middleware coexist
becoming complex and error prone. In this paper we propose
a new framework based on metadata (Java annotations or C#
attributes) that faces these problems and extends the IEEE 1516-
2010 standard. In addition, we present an implementation of the
IEEE 1516 standard in the C# language. Finally, we explain our
experience in implementing the standard in C#.

I. INTRODUCTION

Building complex and very large simulations is usually a
challenge and requires a high effort, not only in its devel-
opment but also for the costs of maintaining and updating
such systems. Simulation middlewares based on the IEEE 1516
standard try to reduce this complexity, but there are still aspects
that hinder the implementation of such simulations. Distributed
simulations based on HLA/RTI are composed by three main
elements that need to be developed and maintained in a
coordinated way. The first one is the code of the model to be
simulated. This code is accompanied by a formal description
of the model (OMT specification). Thirdly, the developer must
integrate all the necessary code for a distributed simulation,
incorporating the usual mechanisms of HLA/RTI (such as the
federate ambassador or the RTI calls).

The use of HLA/RTI concepts increases distributed sim-
ulation development costs in several ways. On the one hand,
distributed simulations are very complex because it requires
expert programmers with extensive knowledge and experience
in distributed systems, simulation, middleware and other re-
lated fields. Also, in large models, is extremely difficult for de-
velopers to totally know all the model details, or even identify
the best way to integrate it with the distributed framework. In
addition, distributed simulation is often more difficult to tune
and debug, mainly due to interactions between the simulation
model and the HLA/RTI engine. Ideally, it would be desirable
to be able to separately develop and test the simulation and
the code that interacts with the middleware.

In addition, it is likely that the simulation model change
with respect to its original conception, introducing an increas-
ing effort to maintain and validate the model. As the simulation
model change, it may appear the necessity to simulate new
objects or to extend existing models. Also, it can happen that
the objects have to communicate in a different way changing
the protocol, message format or the internal representation.
This creates inconsistencies between the three elements of the
distributed simulation: model code, model specification and
the code that interacts with the middleware. Of course, facing
these problems supposes a great deal of time and a big effort to
identify changes in the code that could violate the object model
description. Thus, it is important to avoid code duplication
and unnecessary verbosity on the model definition, aiming at
a better code design, easier to understand and to modify.

With this in mind, in this paper we present an approach that
will aid developers in implementing a distributed simulation by
introducing metadata to an Object-Oriented simulation model.
We propose adding semantic information to source code via
metadata, expressing the intents of the annotated code and
describing the HLA object model.

Source code metadata could be exploited in various ways.
As descriptive information, it could be used to automatically
generate the HLA object model and to check whether the
implemented model is consistent and coherent with what is
reported by external means (e.g. FOM or SOM files). But
there are other uses that could be even more powerful for our
purpose. We are referring to the ability to inject or generate
dynamic code that extends and complements the code needed
for distributed simulation. For example, it is possible to use this
metainformation to automatically generate proxies for remote
objects, or classes that represent interactions messages. As we
will review in the following Section, similar techniques are
implemented in some middlewares or frameworks.

In our investigation we explore the possibility of using
these techniques and how to adapt them to the requirements
of the IEEE 1516-2010, but at the same time keeping com-
patible with legacy implementations. Although Java already
incorporates metadata, we wanted to achieve an additional goal
by developing the first implementation known of the standard
based on C#. Thus, we have developed an implementation
of the HLA IEEE 1516-2010 standard in C# that could



be used as future reference for that programming language.
Our framework will provide a (partial) implementation with
support for Microsoft .NET 4.0/4.5 and Mono runtimes (this
includes Windows and Linux platforms). Although, our first
implementation is based on the C# language, our ideas can be
used to create similar tools for other languages. In particular,
the techniques proposed in our work can be easily translated
and implemented in other languages that support metadata (e.g.
Java).

All in all, our proposal consists of three major elements:
the specification of the proposed annotations, the use of these
annotations to generate the HLA Objet Model and a module to
automatically generate code (proxies, interaction classes, etc).

The rest of the paper is organized as follows. In Section II
we review the use of annotations and dynamic proxies in the
context of distributed computation. Also, we will look at the
most important implementations of the IEEE-1516 standard,
both commercial and noncommercial, and their limitations.
In Section III we present our implementation of the IEEE-
1516 standard, the annotation design and the dynamic proxy
generation. Also, Section III describes our experiences in
programming the standard in the C# language compared to
other languages like Java or C++. Finally, in Section IV we
summarize the benefits of applying metadata to extend and
enhance an IEEE 1516-2010 standard implementation.

II. STATE OF THE ART

In this paper we propose the use of annotations to enhance
the IEEE 1516-2010 standard so we could automatically
generate OMT files, and thus, break the dependence between
code and OMT files which difficulties portability, adaptability
and maintenance. Next, we will review different solutions that
apply marking techniques to middleware. Also, annotations
allow us dynamic proxy generation. Thus, we can separate
program logic and low level system calls which facilitates
keeping classes and methods functionality, so we can write
code to be less error prone. In this section we will also discuss
the use of dynamic proxies in the literature. Finally, we will
briefly review some of the most important, commercial and
non commercial, implementations of the standard.

In last years, the use of metadata has been included in some
object/component-oriented frameworks [1], [2]. Nowadays,
as the amount of used metadata increases, some solutions
have been studied for checking its consistency [3]. Basically,
metadata is used to adapt or configure applications [4], [5],
[6], to generate code [7], [8], or even to solve dependency
problems [9].

As pointed out in [10], annotations are directly related to
the notion of computational reflection, which was introduced
in the context of procedural languages [11]. Reflection is
defined in [12] as the mechanism by which a computer
program can change its own structure and behaviour using
self-representation metadata. Thus, a programming language is
said to be reflective when it provides a reflective architecture
which separates these matadata from the program itself [13].
Although, reflection is commonly used in high-level virtual
machine programming languages like Smalltalk and in script-
ing languages, it is also used in typed programming languages
such as Java, ML, Haskell and C#.

A. Metadata technique

A mark, an annotation [14] or an attribute [15] is a form of
metadata that can be added to source code. Classes, methods,
variables, parameters and packages may be marked. Marks
can be reflective in that they can be embedded in class files
generated by the compiler and may be retained to be made
retrievable at run-time. Marks are often used by frameworks
as a way of conveniently applying behavior to user-defined
classes and methods that must otherwise be declared in an
external source (such as an XML configuration file, like IEEE-
1516 FOM) or programmatically. Marks are not methods
calls nor comments and will not, by themselves, do anything.
Compilers store annotations metadata in the class files. Later,
other programs can look for the metadata to determine how to
interact with the program elements or change their behavior.

The Java EE programming model uses the JDK 5.0 an-
notations [16] feature for Web containers, such as EJBs,
servlets, Web applications, and JSPs [17]. Annotations simplify
the application development process by allowing developers
to specify within the Java class itself how the application
component behaves in the container, requests for dependency
injection, and so on.

The Spring Framework [18] is an open source application
framework and inversion of control container for the Java
platform. This framework provides a mechanism where it can
automatically handle the injection of properties and referred
objects without defining them in XML files. This is accom-
plished by using annotations. Spring provides different custom
Java5.0+ annotations. For example, these annotations can be
used in transactional demarcation, AOP, JMX, etc. There are
core Spring Annotations, Spring MVC Annotations, AspectJ
Annotations, JSR-250 Annotations, Testing Annotations, and
so on.

The Windows Communication Foundation (WCF) [19] is
a runtime and a set of APIs (application programming inter-
face) in the .NET Framework for building connected, service-
oriented applications. As Spring, WCF also provides users
with annotations. For example, WCF annotations allow you
to automatically validate WCF service operation arguments.

B. Dynamic proxy

As an extension of the well-known proxy pattern, a dy-
namic proxy is a normal proxy which is instantiated at run-
time, rather than at compile-time. They can be defined as a
meta-object [12] which, once instantiated, can intercept calls
to the proxied object and change its behavior [20] without
modifying the original object code. Due to its features, it is a
helpful tool which are used in some programming paradigms,
as AOP or dependency injection (DI) pattern [21].

Also, dynamic proxies are used in some solid frameworks
for adding flexibility and reusability, as in the case of Spring
or Hibernate [22].

C. Other IEEE 1516-2010 implementations

As we mentioned before, one of the contributions of this
paper is the first implementation of the IEEE 1516-2010
in the C# language. In this Section we will briefly review



which other known implementations, commercial and non-
commercial exist. As far as we know, none of these solutions
are based in metadata.

In simulation, run-time infrastructure (RTI) is a middleware
that is required when implementing the High Level Architec-
ture (HLA). RTI is the fundamental component of HLA. It
provides a set of software services that are necessary to support
federates to coordinate their operations and data exchange
during a runtime execution. By definition, all the approaches
based on C++ or Ada do not use metadata or annotations.
Only Java based solutions could use metadata, however, none
of them apply this technique to their implementations.

Among commercial solutions we find MÄK RTI [23] and
Pitch pRTI [24]. Both of them provide C++ bindings and
implement current version of HLA, known as “HLA Evolved”.
On the other hand, Open HLA [25] is the only non-commercial
solution that provides an open-source implementation of the
HLA RTI spec 1.3, IEEE 1516 and IEEE 1516 Evolved.
As many other Java implementations, Open HLA provides
a framework to wrap the standard RTI classes and FOM to
code generation to make life simpler. In contrast, we propose
the use of annotations both, to automatically generate the
HLA object model and the proxies for remote objects. Thus,
with our solution developers could avoid code duplication and
unnecessary verbosity on the model definition, aiming a better
code design, easier to understand and to modify.

III. OUR APPROACH

Figure 1 shows the proposed architecture and how meta-
data fits in such proposal. Our goal is to enhance federates
functionality while keeping compatibility with the HLA IEEE
1516-2010 standard. Thus, distributed simulation code could
remain functional and federates will use FOM/SOM files as
usual. However, with our approach developers can introduce
annotations to mark important parts of the code. Then, the
system included in the federate engine can explore the code,
by using reflection, to gather information in order to fill up
files with the HLA Object Model. Also, we could use this
information to generate web services description (WSDL) if
required.

In addition, our solution can even be more powerful if
developers activate the automatic code generation. In this case,
the system creates several C# files with classes, interaction
messages, serializers and other code that can be useful to
generate the simulator. As discussed below, we can generate
these classes having the partial class characteristic of C#
language. Thus, programmers can generate partial code, which
is very common when part of the code is generated by
automatic tools. In C#, it is possible to split the definition
of a class over two or more source files. Thereby, each source
file will contain a section of the definition, and all parts will
be combined when the application is compiled.

Finally, the developer can activate a more advanced feature
of our system by introducing (injecting) dynamic proxies in the
federate code. This characteristic (very close to the concept
of AOP) enables the interception of methods calls allowing
the framework to take control of all the functions related to
distributed simulation. For example, the system detects when a
federate alters the state of some object or instance and marks

Simulation Model 

Federate

Simulation Model 

Federate

RTIRTI

FOM
SOM

FOM
SOM

Generated
Code

(Proxys, Mnsg,..)

Generated
Code

(Proxys, Mnsg,..)
Code

 Generator
Code

 Generator

OMT 
Manager

 &
Generator

OMT 
Manager

 &
Generator

Metadata

Fig. 1. Proposed Architecture. In our proposal we use reflection for metadata
exploration and automatic OMT model description. Additionally, our system
generates code that could help to maintain consistency between code and the
formal description.

it as pending to be propagated to the others federates. The
distributed actualization (through the RTI) can be automatic
(when a state modification is detected, the dynamic proxy in-
vokes the method updateAttributeValues) or delayed (in which
case the dynamic proxy delayed the actualization until the
programmer flush the information). Our interception system
performs a great service for the programmer: developers can
avoid to write and maintain the code specifically associated to
HLA/RTI.

In this section, we will review three major functional blocks
of our proposal (mark or annotation system, code generation
and interception of methods calls). We end this section by
describing some of the design decisions that have arisen while
studying the mapping of HLA IEEE 1516-2010 standard to
the C# language.

A. Metadata design

This section introduces our annotation framework com-
posed by a set of annotations. Each core concept involved
in HLA Object Model is defined as an annotation applicable
to a piece of the program code. The resulting annotations are
summarized in Table I.

Our first step in designing our metadata framework was to
decide how to match each HLA Object Model concept with
an specific metadata. In C# custom metadata (attributes) are
essentially traditional classes that extend directly or indirectly
the Attribute class (a class defined in the .Net platform). Just
like traditional classes, custom attributes contain methods that
store and retrieve data. Each Attribute is defined by three
properties: the kind of element on which it is valid to apply an
attribute, whether inheritance retains metadata and if the same
item can be marked multiple times.

Many HLA concepts have a direct relationship with a
object-orientated concept (i.e. a HLA Object class is a C#
class). This relationship has greatly simplified the design of



TABLE I. OUR METADATA PROPOSAL

HLA OMT Concept Targets Allow Multiple Inherited

Object Model Ident Assembly FALSE FALSE
Keyword Assembly TRUE FALSE

POC Assembly TRUE FALSE
References Assembly TRUE FALSE

Glyph Assembly FALSE FALSE
Object Class Structure Class, Interface, Struct FALSE TRUE

Interaction Class Structure Class, Interface FALSE TRUE
Attribute Property FALSE TRUE
Parameter Field, Property FALSE TRUE
Dimension Assembly TRUE FALSE

Time Representation Assembly TRUE FALSE
User-Supplied Tag Assembly TRUE FALSE

Synchronization Assembly TRUE FALSE
Transportation Type Assembly TRUE FALSE

Update Rate Assembly TRUE FALSE
Switches Assembly TRUE FALSE

Basic Data Rep. Assembly TRUE FALSE
Simple Datatype Assembly, Class, Struct TRUE FALSE

Enumerated Datatype Enum TRUE FALSE
Array Datatype Assembly, Class, Struct TRUE FALSE

Fixed Record Datatype Class, Struct TRUE FALSE
Record field Field, Property FALSE FALSE

Notes All TRUE TRUE
OnInteraction Event, Method TRUE TRUE

our framework. However, other concepts of simulation model
information, like point of contact (POC), have no obvious
correspondence. A model is a combination of classes, objects
and interactions that, together, offer a simulation or part of it.
In the course of this section we will see some of the main
concepts and how they are translated into metadata.

In our framework, a typical federate could be composed
by one or more compiled code libraries (assemblies, in the
Common Language Interface) that are loaded dynamically
using a plug-in system. The definition of the plug-in provides
information about the assemblies to be loaded (file location
and load order) and if the metadata must take precedence
over information from existing files. Once the assemblies
are loaded, our framework explores them extracting all the
metadata information.

a) Object model identification table: The purpose of
this table is to document certain key identifying information
within the object model description including name of the
model, purpose, key dates, POC and so on. All this information
is global to the HLA object model and thus, Object Model
identification table information is stored as metadata at the
assembly level.

In our framework, this concept has been mapped to the
following C# attributes: ObjectModelIdentification, POC, Key-
word, References and Glyph. All theses attributes must be
defined at assembly level. Following the standard, some of
them may be defined multiple times (i.e POC or Keywords).
Obviously, our framework shall validate and verify that the
metadata included in the assemblies are valid and conform to
the standard.

b) Object Class Structure and Attributes: This informa-
tion records the namespace of all federate or federation object
classes and describes their class-subclass relationships. Given

the Object-Oriented approach of C#, a HLA Object Class can
be directly associated with class-level annotations. There are
two schools of thought on how to best extend, enhance, and
reuse code in an object-oriented system: Inheritance (extend
the functionality of a class by creating a subclass) and Ag-
gregation (create new functionality by taking other classes
and combining them into a new class). In this version of
our framework, the class-subclass relationships are defined
using inheritance. For this reason, the Object Class Structure
is defined using the C# attribute ObjectClassAttribute at class
level. We plan to extend our framework in order to include
also aggregation as a mechanism to describe class-subclass
relationships. For this the reason we also allow the definition
of the metadata at interface and struct levels.

Attributes table is used to specify features of object at-
tributes in a federate or federation. At this point, care is
required with the terminology used because the word attribute
means different things depending if we are talking about HLA
Attributes (a element of information inside a object) or about a
C# attribute (a metadata or annotation). HLA attributes refers
to fields or properties in a C# class. Therefore, this information
is annotated as C# attributes at field or property level 1. We
don’t allow applying them multiple time.

c) Interaction Class Structure and Parameters: This
table is used to record the namespace of all federate or fed-
eration interaction classes and to describe their class-subclass
relationships.

As before, this information corresponds directly to common
concepts of object-orientation in C#. Interaction classes are
defined using the C# attribute InteractionClassAttribute at class
or interface level. On the other hand, Parameters are defined
using ParameterAttribute.

Additionally, we have defined an attribute that can be
applied to C# methods or events. This attribute is called
OnInteractionAttribute and defines the method or an event that
is called when an iteration arrives. This information is available
for the federate ambassador and is optional to the developer.

An example is provided in code figure 2 both in C# and
in Java.

d) Data types: Several of the OMT tables provide infor-
mation for datatype specifications. These tables describe types
that are used to specify others characteristics like attributes or
parameters.

Basic data representation are predefined as primitive data
types at assembly level. The C# attribute includes information
about the native type. An example is presented at the code
snippet 3

Simple data type information is defined at several levels.
In addition to class or struct, we have also allowed to define
this attribute at assembly level as some of the simple data
types have primitive implementation in C# (i.e char or byte).
A similar situation occurs when dealing with Array data
types. It can be defined at class, struct or assembly (unicode
string) levels. Enumerated data types are mapped directly to
C# enums. Fixed and Variant record data types are defined
using annotations at the class or struct level. Unlike Java, C#

1C# Properties get and set values. It is a convenient way to simplify syntax.



// a C# example
public class CountrySimulator
{

[OnInteraction(Interaction="startSimulation")]
public void OnReceivedStart() {}

[OnInteraction(Interaction="stopSimulation")]
public event OnInteraction OnReceivedStop;

// Other fields and methods go there ...
}

// The same example in Java
public class CountrySimulator
{

@OnInteraction(Interaction="startSimulation")
public void OnReceivedStart() {}

// Other fields and methods go there ...
}

Fig. 2. Interactions Metadata. This code snippet represents how metadata
could be used to identify methods or events that are called when an interaction
arrives.

[assembly: BasicData(Name = "HLAinteger16BE",
Size = 16,
Interpretation = "Integer in the range

[-2ˆ15, 2ˆ15 - 1]",
Endian = EndianType.Big,
NativeType = typeof(System.Int16),
Encoding = "16-bit two’s complement

signed integer. The most
significant bit contains the
sign.")]

Fig. 3. BasicData Metadata. This example shows how an assembly level
annotation could be used to define basic data or other general information.

allows to define value types (as opposite to reference types).
These types are called struct, and it is a concept very close
to the concept of record defined at the standard. In the record
definition has been necessary to incorporate other annotations
identifying fields (normal, discriminant and alternative fields).

e) Other information: Other information like Trans-
portation Types, Dimensions, Switches, Synchronization, and
so on are defined at assembly level. For instance, the trans-
portation type HLAreliable is defined at code 4

[assembly: TransportationType (Name = "HLAreliable",
Reliability = true,
Semantics = @"Provide reliable delivery

of data in the sense that TCP/IP
delivers its data reliably")]

Fig. 4. Transportation Type Metadata. This metadata has no real
correspondence in functional code but provides useful information that could
be retrieve at runtime.

f) Notes: Every HLA concept may be annotated with
additional descriptive information. The standard defines this
information as notes that could be included as a separate table.
In our work we have enabled the option to include notes
on each source code element accompanying other metadata
elements.

B. Code generation

OMT generator is relatively simple. The framework in-
ternally has data structures corresponding to one or several
HLA Object model. These structures can be serialized to XML

using the format specified by the IEEE 1516-2010. The model
definition can be derived from one or more sources. The system
can be configured to consider and mix both OMT files and
information from the metadata.

Combining information from the OMT files and metadata,
our system can automatically generate code. The system has
multiple levels of usage. On the one hand, it can be configured
to generate code C# in files. These files are composed of
several elements that are described below. The purpose of
generating this code is to facilitate the work of the developer
providing a base upon which to expand the simulation model.
The generated code has two specific features that make it easy
to maintain and extend. In the first place, the generated code
includes appropriate markings or annotations that could be
used to regenerate OMT tables if necessary in the future. This
avoids having to keep both versions of the model (OMT file
and code). In addition, the generated code may partial. Partial
classes and partial methods are two programming language
features of .NET programming languages that make it possible
for developers to extend and enhance auto-generated code. In
a nutshell, partial classes allow for a single class’s members to
be divided among multiple source code files. At compile-time
these multiple files get combined into a single class as if the
class’s members had all been specified in a single file. If the
developer using the auto-generated code wants to extend the
functionality of the class by adding new methods or properties
she can do so by creating a new partial class file and putting
her additions there. By having these additions in a separate file
there’s no risk of the tool overwriting the developer’s changes
when regenerating the code. The following code snippet 5
represents this idea.

// This code is generated into some file, for instance
CountryGenerated.cs

[ObjectClass(Name = "Country", Sharing =
HLAsharingType.PublishSubscribe)]

public partial class Country : HLAObjectRoot
{

// this code could be automatically generated
[Attribute(Name="Population")]
public float Population { get; set; }

// Other fields and methods go there ...
}

// This code is in another file, for instance Country.cs
public partial class Country
{

// Code generated by a programmer..
public void UpdateCountry()
{ }

// More fields and methods go there ...
}

Fig. 5. Object Class definition. Using a set of metadata, programmers could
define the structure and properties of the Object Class model. Note the use of
partial classes.

Moreover, the generated code can be used as a basis for
proxies injection and utilization. When our framework detects
that a federated intends to use a particular class defined in
the SOM, the tool automatically generates (in memory) and
dynamically compiles the proxy that manages that object class.

Another element of the generated code is composed by
classes that correspond to the objects class of the OMT. These
classes can be used as proxies (in the usual sense, sometimes
also called stub). By this, we mean a class that represents
a remote real object. These classes are used as substitutes



for actual objects being simulated and updated by a remote
federate. As they change the state of an object, the system
propagates the changes and updates a local replica of the
object. The advantage of using proxies is that it is possible to
avoid the distribution of the original source code. Additionally,
proxies could produce a significant reduction in memory usage
by the simulation. Reproducing the full state of a remote object
could be very expensive in memory usage. If in addition, the
number of objects is high, the impact on memory consumption
can be huge and adversely affect performance. But, in some
scenarios, federates only access to a partial view of simulated
objects. In these scenarios, the simulator does not require to
reproduce the complete state of the remote objects and thus,
proxies of this objects will help to reduce the memory impact.
As developers could change the composition of objects by
enabling or disabling Subscribe in the model definition, manual
proxies implementation is complex and error prone. With our
proposal, this code is generated automatically. These proxies
can be generated prior to compilation (generating files that are
included in the project as additional items) or automatically
and transparently to the programmer (in this case, the code is
generated in memory and compiled at runtime).

Code generator is part of the tool that covers generation of
object classes, interaction messages and other source code ele-
ments. Specifically, our code generator generates the following
elements,

1) Object class. For each object class in the model definition
we generate the source code representing a class with the
same inheritance, structure and fields described by the
HLA model. This code could be used in several ways.
For a developer, this functionality can serve as a starting
point to extend the class. Taking advantage of the ability
to define C# partial classes, the programmer can work on
different files other than those generated automatically by
the tool.

2) Interactions. For each interaction, the framework could
generate a class representing the message.

3) Serializers. Using information described in the OMT
Model, we generate a class with the serializer and deseri-
alizer of each object class and iteration. This characteristic
is specially useful given that message representations are
prone to modifications. For instance, a parameter or an
attribute could be transmitted using big-endian or little-
endian just changing the OMT description. Generating the
appropriate code at runtime, developers could concentrate
their efforts in other areas of interest.

4) Data types. For each data type, our framework generates
a C# code that support the description given in the
FOM/SOM file. C# has some programming characteris-
tics that help in the definition of these data types. For
instance, C# has value types (struct) that could be used
for the definition of FixedRecord. Or the utilization of
[StructLayout(LayoutKind.Explicit)], [FieldOffset(-)] for
VariantRecord definitions.

C. Dynamic proxy generation

The dynamic proxy functionalities allow us to automati-
cally maintain and complete the simulator code. We use the
CastleProject’s DynamicProxy C# library [26] for our purpose.
It works using the proposed metadata for adding new and

transparent functionality into the code. When an object is
created by a federate, our framework intercepts the creation
process and produces on the fly at runtime a dynamic proxy
around the object. Proxy objects allow calls to members of
an object to be intercepted without modifying the code of the
class. Both classes and interfaces can be proxied, however only
virtual members can be intercepted.

Our solution has proved to be fast and lightweight. This is
due mainly to the design of the CastleProject’s DynamicProxy.
It has some powerful capabilities that allow the customization
of the proxy type being created. In our proposal, this feature
has been a key factor so we could decide which methods must
intercept the dynamic proxy and avoid innecessary methods
interceptions.

The alternative to this proposal is to use MarshalByRe-
fObject. Extending MashalByRefObject to proxy an object
can be too intrusive because it does not allow the class to
extend another class and it does not allow transparent proxying
of classes. In addition, MarshalByRefObject are sensitive to
context and therefore, there is no interception of method calls
when produced inside the object.

Using interceptors we were able to inject behaviors into
the proxy and hide all the middleware functionality inside.
When a simulation calls a method on the simulated object and
before the method call reaches the target object it goes through
a pipeline of interceptors. Each interceptor gets its chance to
inspect and change those values before the actual method on
the target object is called.

We use those interceptors in order to add the following
functionalities,

1) Automatic generation of handlers. Using the metadata,
the system knows the elements to be described by the
handlers. Specifically, in the objects construction, the RTI
can be automatically requested for handler assignment.

2) Property update interception. When a property is set,
intercepting the method call, the system looks for any
object status change. Internally, the dynamic proxy marks
this object as dirty and uses this information for further
state propagation.

3) Property update propagation. The dynamic proxy ob-
serves the object status and keep track of changes. When
needed it propagates this information calling the RTI (for
instance, calling updateAttributeValues).

4) Remote property update. If the RTI notify the system
about any change, the object is transparently updated by
the dynamic proxy. The programmer does not need to
update or take care of this process. She only have a view
of the remote objects that are updated as the RTI provides
actual information.

One aspect that remains unclear is the destruction of the
object. In C# (like Java) there is no destructor method and a
more deep study is needed if we want to detect automatically
when an object is destroyed. Although, C# has the IDispose
interface, in our first implementation we do not use it for object
destruction and we rely on an explicit call that must code the
developer.

Considering all of these, we provide an example of how
our approach could improve the implementation of an object



public class Country
{

public int Population {get; set;}

public void UpdateCountry()
{

this.Population += 10;

AttributeHandleValueMap attributeMap = _ambassador.
getAttributeHandleValueMapFactory().
create(1);

attributeMap.Add(_attributePopulationHandle,
populationCoder.encode(this.Population));

_ambassador.updateAttributeValues(thisHandle,
attributeMap, null);

}
}

Fig. 6. Usual simulation object. This snippet of code represents the usual
code for an object class where the code of the simulation coexists with the
HLA/RTI code.

class. In the usual simulation approach we mix the code about
the simulation with the code that calls RTI or other middleware
elements. A simplified example, could be observed in figure 6.
However, using our approach, we just mark the object class
and its fields with attributes (metadata). Developers only have
to concern about the simulation code (i.e. how the object is
compute or simulated). In the code at figure 7, we show how
it could be implemented.

[ObjectClass(Name = "Country", Sharing =
HLAsharingType.PublishSubscribe)]

public class Country : HLAObjectRoot
{

[Attribute(Name="Population",
Transportation="HLAreliable")]

public int Population {get; set;}

public void UpdateCountry()
{

this.Population += 10;
}

}

Fig. 7. Enhanced simulation object. This new version of the same object
class has annotations and without HLA/RTI code.
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and automatic code. Dynamic Proxies intercept method calls at runtime.

D. C# implementation experience

While our work is focused on the application of metadata
for the OMT model description, it has also generated parallel
lines of work that have been of interest. One of the most inter-
esting has emerged when we faced the porting of the standard
to C#. This section briefly describes the work performed and
the main conclusions.

In general, the mapping of the standard to C# was relatively
straightforward. Based on the existing C++ or Java proposals,
the mapping of the standard to C# was in general easy to
implement. Most of the modifications were changes in notation
mainly due to the usual style guide in C#. Only a small number
of aspects required a more detailed study.

One of these aspects was the specification of logical time
and logical time interval. In Java, the implementation of these
concepts uses generics although methods in the RTI interface
use the non-generic versions. This is possible due to the Java
compatibility between generic and non-generic classes. In C#
this is not possible and we have changed the implementation
of LogicalTime and LogicalTimeInterval as follows. First,
we have defined non-generic interfaces (i.e. ILogicalTime).
Then, we have defined a generic interface that extends the
non-generic version, and finally we have implemented con-
crete classes where operators could be defined. C# allows
the definition of mathematical operator like +, −, etc., but
these operators are static and thus, interfaces can not include
operators’ definitions. We think that our proposal can combine
both C++ and Java proposals. A code excerpt of all of this is
included in the code snippet 9.

public interface ILogicalTime
{
// Methods like IsInitial, IsFinal, Add, etc.

}

public interface LogicalTime<T, U> : IComparable<T>,
ILogicalTime where T : LogicalTime<T, U> where U :
LogicalTimeInterval<U>

{
// Methods go there

}

public struct HLAinteger64Time :
LogicalTime<HLAinteger64Time, HLAinteger64Interval>

{
// Methods go there

public static HLAinteger64Time operator
+(HLAinteger64Time time, HLAinteger64Interval
interval) {...}

}

Fig. 9. Logical Time Proposal. A combination of interface and generic is
used to define the logical time concept. For the concrete implementation of
the HLAinteger64Time a struct is used.

There was another issue that needed a minor change in
the C# implementation. A large number of Java classes extend
the Serializable interface. The serialization interface has no
methods or fields and serves only to identify the semantics of
being serializable. But in C# this semantic can be expressed by
using the attribute [Serializable()] or extending the interface
ISerializable. None of these solutions is applicable to our case.
The former is a property that is not inherited by extending a
class and therefore meaningless in an interface. The second
one requires implementing serialization methods with no use
in the context of HLA/RTI. In our implementation we have
chosen to remove this semantics from the standard.



Other differences of our implementation in C# are due to
the use of the .Net libraries. For example, C# provides libraries
for generic collections that are very similar to Java. For proper
operation of these collections is necessary to implement the
Equals and GetHashCode methods. We opted for the same
solution proposed by Java defining these methods in the
interface, even if this solution does not force programmers
to override these methods.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed the use of annotations for
model description and dynamic code generation in order to
provide developers with a mechanism that will aid them to
write clean and easy to maintain distributed simulations. As
far as we know, current implementations of the IEEE 1516-
2010 standard do not support this technique, not even Java
ones. In addition, we report the real experience of applying
this idea to the first implementation of RTI in the C# language.
Thus, we explain decisions taken when mapping HLA Object
Model concepts to specific annotations. Also, we describe the
use of these annotations to automatically generate the HLA
Objet Model and other important elements such us proxies,
interactions, serializers and data types. As we have seen, code
examples provided show how attributes are a convenient way
to simplify syntax. So, future changes in the simulation model
will be easier to maintain and validate, saving developers time.

We are currently researching several alternatives to provide
a decentralized communication scheme for distributed simula-
tion systems. Of course, we are looking for a solution that
accomplishs the IEEE 1516-2010.
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