NetIDE: First steps towards an integrated
development environment for portable network apps

Federico M. Facca*, Elio Salvadori*, Holger Karl', Diego R. Lépez?,
Pedro Andrés Aranda Gutiérrez!, Dejan Kosti¢®, and Roberto Riggio*
*CREATE-NET, Via Alla Cascata 56/D, 38122 Trento, Italy
Email: ffacca@create-net.org, esalvadori@create-net.org, rriggio @create-net.org
TUniversitit Paderborn, Warburger Strafle 100, 33098 Paderborn, Germany
Email: hkarl @mail.uni-paderborn.de
I Telefénica I+D, GCTO Unit, D. Ramén de la Cruz 82, 28006 Madrid, Spain
Email: diego@tid.es, pedroa.aranda@tid.es
§ IMDEA Networks, Avenida del Mar Mediterrdneo, 22, 28918 Leganés, Madrid, Spain
Email: dkostic@imdea.org

Abstract—Nowadays, while most of the programmable net-
work apparatus vendors support OpenFlow, a number of frag-
mented control plane solutions exist for proprietary Software—
Defined Networks. Thus, network applications developers are
forced to re-implement their solutions every time they encounter
a new network controller. Moreover, different network devel-
opers adopt different solutions as control plane programming
language (e.g. Frenetic, Procera), severely limiting code sharing
and reuse. Despite having OpenFlow as candidate standard
interface between the controller and the network infrastructure,
interoperability between different controllers and network devices
is hindered and closed ecosystems are emerging. In this paper we
present the roadmap toward NetIDE, an integrated development
environment which aims at supporting the whole development
lifecycle of vendor-agnostic network applications.

Keywords—software-defined networking; ide; network applica-
tions portability; network applications development cycle

I. INTRODUCTION
A. The need for better development support in SDN

Software-Defined Networking (SDN) has brought about a
proliferation of network control plane solutions [1]. Various
control planes support different APIs, often at different, still
typically low, abstraction levels. For a developer of a cus-
tomized network solution, it remains a challenge to develop
directly using these APIs; consequently, there is a considerable
momentum in the community for developing standalone tools
to support SDN development, e.g., debuggers, profilers, simu-
lators, or specialized editors. While these individual tools are
indubitably helpful, their partial lack of maturity and missing
integration entails high development and management costs for
SDN programs. Also different SDN APIs relies on different
tools, e.g., JunOS has is own IDE that cannot be used for
programming networks based on Cisco ONE, thus limiting
the portability of network programs. Combined, these issues
threaten wider success of SDN as a whole.

The current state of affairs in SDN development is sketched
in Figure 1 (we shall use this figure as a basis to later
explain what changes are needed and intended). Currently,
different SDN visions, each with their own merits, coexist and
provide partial solutions to networking problems. However,

Editor 1 Editor 2
Environment

Resource
Manager

Development

Deployment
Environment

OpenFlow Na ai OpenFlow
Controller Controller Profiler
1 2

Fig. 1: State of the art in SDN software development.

there is no sensible integration of these solutions — there is
some freedom in choice due to the introduction of standard
control protocols like OpenFlow, yet no harmonized solution
across the network gear/control logic gap. Thus, a network
operator that deals with different SDN-like gear and controllers
needs to develop a number of different solutions for all the
various controllers (or even non-OpenFlow gear) it uses in
operating its infrastructure'. This is even more evident in the
case of cloud software developers that aim to closely integrate
(for optimization purposes) their software with the underlying
network infrastructure that may change from customer to
customer. This technological diversity turns quickly into an
implementation and deployment nightmare, fostering vendor-
lock-in with all its known downsides.

We stipulate that there is considerable benefit in integrating,
simplifying, and harmonizing the development process for
SDN, e.g. code portability will be improved, development time
will be reduced and network software management procedures

Unless the operator chooses a costly option to replace the entire gear or
controllers with a single solution.



will be more automated. That integration should take place
with respect to different tools (e.g., debuggers and profilers),
but also with respect to the multitude of different control
protocols (OpenFlow or proprietary), control platforms (open
source or proprietary), and tools. In particular, access to these
tools and platforms should be presented to a network developer
in a fashion similar to what a software developer is used to.
We claim that there is a need for a single Integrated Devel-
opment Environment (IDE) that supports the whole software
development cycle for Network Applications, running on top
of a Software-Defined Network (Section I-C will make the
notion of “Network Apps” more precise). Specifically, such
an IDE should support the typical design, code & compile,
test & evaluate cycle that still prevails in much of software
development, as well as more advanced approaches (e.g.,
model-based design). For the design phase, such an IDE
should support the use of high-level languages for SDN (e.g.,
Frenetic [2], Procera [3]). For the code & compile phase,
different target platforms (e.g., different controllers) should be
supported from the same source for the network application.
For the test & evaluate phase, both evaluation tools like
Mininet [4] (or other simulators) should be tightly integrated
in the development process, as well as debugging and profiling
tools for life networks.

Yet apart from the support and tight integration of a
wide range of tools, an efficient development cycle is also
characterised by an access to a wide range of standard services.
In conventional software development, this is usually achieved
by access to standard libraries. Extending our analogy from
conventional software development to network applications
development, we see a need for a rich set of standard,
feature-rich, extensible system-level services that can be tightly
integrated in a development process®. Examples for such run-
time services include:

e Flow table optimisation: when a sufficiently high number
of flows share the same path, it could be beneficial to use
the same network state for all these flows. This can be
done by replacing shorter-lived, per-flow switching entries
in the switch with longer-lived entries that are valid for
these flows.

e Garbage collection: in this scenario, there might be table
entries that are only used by low data rate flows, which
just consume resources in the switching table. A process
is needed to identify such entries in the table and trigger
a table clean-up, e.g., merging such entries and jointly
rerouting low-priority flows on secondary routes.

We hence believe it is necessary explore the definition
of new network-layer services that are independent of the
underlying SDN flavour, and provide the support for emulator-
in-the-loop and simulator-in-the-loop configuration.

B. An example: Network Programs for Big Data Services

Consider, as example, a Big Data solution developer who
provides tools and services to optimize and control the network
interconnecting its different Big Data nodes. Currently, he
would develop specific software according to the appliances

2Strictly speaking, even a “system-level service” is an application running
inside the network, yet it seems advisable to distinguish between more system-
oriented and more user-level oriented network apps.

and network control plane solutions adopted by his customers.
This requires the manual combination of different sets of tools
for each SDN solution to cover the whole development cycle
(e.g. different IDEs, different debug tools, etc.). The only
reusable part of his code would be the APIs the service exposes
to control the network.

With the introduction of NetIDE, this developer will use
a single development environment to support the development
of network control programs for different SDN frameworks.
Moreover, suppose he needs to support an SDN framework
that is not yet supported by NetIDE (e.g. Cisco ONE). In this
case, he will only have to develop a new driver to integrate
the new SDN framework into NetIDE (where this driver could
be a product in its own right, rather than just a clumsy porting
exercise like today). In this way, he will reduce the cost to
develop tools and services to manage SDN-like networks for
his Big Data solution. Moreover, he will be assured forward
compatibility with new SDN solutions coming to the market.

C. Our contribution

In this paper we present “NetIDE”, a concept for a one-stop
solution for developing network control plane programs. The
main ingredient is an IDE that supports the whole development
lifecycle for software-defined networks, from the design of pro-
tocols and rules to testing and deploying them, and predicting
or evaluating their performance. The approach will be indepen-
dent from the specific programmable network apparatus vendor
and it will be independent from the programming language
used to write network control programs.

The simplification of network programming goes along
with the concept of Network Applications or Network Apps.
A Network App is a customized code that is able to dynami-
cally control the behavior of a set of resources in the network.
In the context of an SDN architecture, such Network Apps
would control and parameterize the actual SDN controller. A
Network App can be fairly close to an actual application (e.g.,
optimizing a network for a particular mixture of MapReduce
jobs in a data center); it can also be more oriented to lower-
level system tasks — in this latter case, we typically talk
about Network Services as a special kind of Network Apps.
Moreover, a Network App is not restricted to interacting with
the SDN controller only. It can also offer interfaces via which
other Network Apps can interact with it. In the end, this can
turn a mere SDN into an Application-Defined Network where
the application(s) on top of the network directly influence the
re-programming of underlying networks through a dialogue
with the control plane. In our vision, a network developer
should be able to:

e Perform the whole network programming development
lifecycle from a single IDE. The IDE should cover:
requirement collection, design, network program coding,
network program deployment, testing and debugging.

e Program any SDN-like network using his favorite network
programming language, while sharing code with develop-
ers using other programming languages to maximise ease
of development and reuse.

o Investigate and ascertain the likely performance of the
resulting network for various load patterns by having
performance analysis and debugging tools integrated in
the development cycle.



e Deploy the generated network programming code on top
of different and coexisting SDN frameworks.

The remaining paper is structured as follow. In Sec. II
we briefly discuss the related work. Section III presents
the concepts that we will use to build NetIDE Interchange
Representation Format. In Sec. IV we discuss a reference ar-
chitecture for the implementation of NetIDE concept. Finally,
Sec. V presents our plans to realize the NetIDE concept.

II. BACKGROUND & STATE OF THE ART
A. Raising the abstraction level in SDN

High-level languages such as Frenetic [2], SNAC [5], The
Flow Management Language [6], and Nettle [7] cover part or
the entire set of control loop requirements. Frenetic includes
a network state querying language together with a policy
definition language, and a methodology to instantiate rules
in an OpenFlow network. It also introduces the concept of
composition that allows different application to operate on an
isolated slice of the network concerning both routing and mon-
itoring aspects. An evolution of the Frenetic language called
Pyretic [8] introduces the concept of sequential composition,
as opposed to the parallel composition exposed by Frenetic.
Sequential composition allows different applications to process
the same packet. SNAC and the Flow Management languages
focus more on the definition of Access Control Lists using
a custom pattern-matching based language. Nettle provides
an abstract, although low-level language for programming
OpenFlow switches, but lacks any querying language and an
intermediate runtime system capable of composing different
network application. Procera [3] is a high level reactive
network programming language which allows the network
developer to implement policies that can adapt to changes in
the underlying network. For example, Procera can be used to
implement user authentication, or policies that need to react
to the time of the day or the amount of traffic generated by
the user. Procera can in principle run on top of any OpenFlow
controller and even act as a policy layer for solutions such as
Frenetic.

SDN allows multiple applications to control the same
network, therefore, security and correct applications isolation
is very important. Along the security and access control
research direction we find FlowVisor [9] and FortNOX [10].
Both approaches provide a system for enforcing security and
authorization constraints. However, while FortNOX is built on
top of the NOX controller, FlowVisor acts as proxy between
the controller and the actual network and provides a controller-
agnostic solution that slices the network between a range of
packet subspaces and provides isolation between them. Each
application can access and operate only on its own slice.

OpenDaylight [11] is a recent initiative by major companies
to contribute to a new unified SDN stack. The participants plan
to provide a new controller platform. At the low, network-
facing, level it is capable of communicating with the switches
supporting different protocols (e.g., OpenFlow). At the high,
application-facing, level it provides a REST API to communi-
cate with user-provided applications.

B. Tools

To evaluate or predict performance of an SDN setup, only
a limited set of tools exist. First, there are common discrete
event simulators (e.g., NS/3, OMNeT++), but they lack specific
features that would allow their simple application to the SDN
world. SDN-specific tools like Mininet [4], OFLOPS [12]
exist, yet some suffer from limited scalability. E.g., Mininet,
as shown by benchmarks, did not yet achieve the original goal
of ”1000 nodes in a laptop”, or in simpler words of simulating
a real wide network on commodity hardware [13].

There exists a large number of tools that allow SDN testing
before deployment, and debugging it afterwards. First, there
are solutions that model the network and allow controller
testing. AntEater [14] and Header Space Analysis (HSA) [15]
can identify typical connectivity errors in a given configuration
by statically analyzing the dataplane configuration, i.e. the
forwarding tables. NICE [16] provides a systematic approach
to testing of multiple possible event orderings by taking into
account existence of race conditions in a network that is
inherently a distributed, asynchronous system. SOFT [17] tests
the interoperability of OpenFlow switches.

When the network is in operation there are other tools
that allow simple monitoring and troubleshooting. Examples
include ATPG [18], NDB [19], OFRewind [20] (with auto-
mated filtering [21].) to record both control channel as well as
selected portion of data packets. It then allows administrators
to replay selected parts of the recorded trace in order to locate
a sequence of messages and events that lead to an error.
Further, there are tools that allow quick evaluation of basic
network forwarding properties when facing quickly changing
forwarding rules, e.g. NetPlumber [22] and VeriFlow [23].

This richness in tools is both an advantage and a challenge
for a typical developer. We aim to harness this richness by
integrating and structuring it.

III. NETIDE INTERCHANGE REPRESENTATION FORMAT

NetIDE will define a mechanism to abstract SDN pro-
gramming independently from the underlying SDN flavor. The
abstraction mechanism will range from networking frame-
works based on open standards like OpenFlow to closed pro-
grammable networking frameworks relying on specific APIs
provided by the vendor (e.g. Junos XML API by Juniper
Networks). This approach allows us to define Network Apps
independently of the actual network gear and controller tech-
nology. This assertion is valid as well for generic Network
Apps such as Resource Manager and Garbage collectors that
can be used as well as services by other Network Apps.

At the heart of this approach lies the NetIDE Interchange
Representation Format (IRF), a lingua franca (i.e., a uni-
fying language) that covers orthogonal aspects of deployment
models of different SDN approaches (e.g. floodless vs flood-
based) and that is executable and translatable across different
SDN flavors (e.g. OpenFlow versus Junos). The NetIDE IRF
can be deployed on the actual SDN substrate in the same
way as OpenFlow or vendor—specific applications are deployed
today. At the same time, it provides a common representation
of the network that allows our tools to be SDN platform
independent. Thus, different components of the IDE, such



as the debugger, can be designed independently from the
underlying SDN, since they will be manipulating objects in
the IRF. Initially, the IRF will consist of two essential parts:

e Topology information. Topology information will capture
the structure and parameters of different network layers
and their relationships. For instance, physical network
topology will form a basis for logical network topology,
and Layer 3 topology will be defined on top of it.
Topology information has to be extensible so as to enable
defining special layers in support of particular use cases.

e Policy descriptions (e.g. routing, security and monitor-
ing). Policy description will be based on the concept of
functional reactive programming (FRP). This way, the
network will be able to react both to changes in quasi-
continuous signals, such as aggregate traffic volumes, and
to sequences of discrete events. The policy rules may be
formulated for a single network switch or its interface, or
expressed in terms of the entire network. It will be the task
of NetIDE software to translate network-wide rules into
a coordinated set of fine-grained rules and instructions
for individual network elements, using also the topology
information. IRF will also provide combinator operators
that will allow for combining simple rules into more
complex ones.

From a software-engineering perspective, we will take a
Model Driven Architecture (MDA)-like approach. We will
define Network Apps using a platform-independent model
(PIM) using an appropriate domain-specific language (DSL).
IRF as matter of fact will play the role of DSL that we will use
to describe SDN solution-independent Network Apps that will
act as PIM. Then, at deployment time the PIM is translated
to one or more platform-specific models (PSMs) that network
controllers can run. In this case the PSMs will be the set of
instructions that can be understood by OpenFlow controllers or
specific vendors network controllers. Moreover, in line with the
principle of recursively applying MDA transformation patterns
across different abstraction layers, we will allow the developers
to use different DSL (e.g., Frenetic) to build PIMs that are then
transformed to IRF.

Figure 2 shows the transformation flow (abstracting from
MDA) we will adopt in NetIDE. Network programs described
through different languages (e.g. Frenetic or PI-Calculus) can
be transformed to IRF and vice-versa allowing developers to
select their favorite network programming language. Network
programs described through IRF can be executed on top of
different controllers thanks to a set of drivers that convert IRF
to controller-specific instructions (e.g., Floodlight or Trema).

The tools developed by the NetIDE will generate and
process IRF content. On the input side, the tools will translate
selected network programming languages into IRF, and the
main task on the output side will be to transform IRF rules
into a coordinated set of instructions for individual network
elements, using the topology information as well as other
technical details, such as sampling rates of quasi-continuous
signals.

IV. NETIDE ARCHITECTURE

The transformation flow described above will be supported
through a reference architecture implementing the development

Frenetic
Source
code

I

Pl-Calculus
Source

NetIDE
Intermediate

Format 7

code

I

NetIDE
Visual
model

L 7
JunOS/ONE controller
1 n ]
L. 'E h
IDE (e.g. Eclipse) Deployment Environment

Fig. 2: NetIDE network abstraction flow

Requirements
collection
«Collect Network App

deployment
constraints

Development

*Code the Network
App behaviour and
its interfaces

Fig. 3: A reference development cycle for Network Apps

cycle for Network Apps sketched in Fig. 3. The main activities
in such cycle are:

e Requirements collection: in this phase the developer
defines the scope of the Network App: it may be a
service application, e.g., the garbage collector that cleans
up unused flows; it may be an interface towards other
applications (e.g. Cloud Management tool) to facilitate
the dynamic reconfiguration of the network; or a simple
network control plane application like a load balancer
allocating traffic flows in the network in order to minimize
traffic congestion events. In this phase he can collect
information on the topology (or topology pattern) and
other aspects relevant to the design of the Network App.

e Analysis and Design: following the results of the require-
ments collection phase, the developer provides a specifi-
cation of the actual behavior of the Network App and
models relevant aspects that will constitute both variables
and constraints of the Network App. For example, he can
formalize (or retrieve it from the controllers) the topology
as a initial model on top of which he defines the traffic
flows or other network programming aspects.

e Development: the developer actually codes the network
program using his favorite network programming lan-
guage, translates it to the IRF, and develops the APIs
that the Network App will expose to third parties for



N NetIDE Developer Toolkit

Editor 3 | Editor ...

B éEC

Transformer2

v

NetIDE IRF Transformer API

Editor 1 | Editor 2

Transformerl

v

Transformer3 | Transformer... ‘—@‘—

NetIDE IRF
Repository f

NetIDE Network
APP Configurator

NetIDE Network
APP Deployer

Other Dev.
Support Tools

/NetIDE Network App engine

(9
eé,c‘\qq% %/)"‘o%‘ <,
¥ %0 %
B3 ‘96,
NS [}
O
S s® %%,
R %
) Interpreter o
& %
SN %
K ng S

J
e N

\ -£ NetIDE\Network Drivers API j
Native

OpenFlow
AP|

Third Party
Floodlight APIs
Juniper
T

(= Emulator/
& Similuator]

Fig. 4: NetIDE Reference Architecture

interacting with its functionalities.

e Testing and Validation: testing is an integral and im-
portant phase of the software development process. This
step strives to ensure that defects are recognized as soon
as possible. With support of Unit tests and simulators,
the developer will be able to experiment in advance with
the behavior of the Network Application (or of its parts)
before deployment in the production environment. In this
way, he will be able (for example) to simulate the traffic
flow in the network and check whether the rules he
defined for the Network App bring the desired effect.
Also, he will be able to test passing parameters from
third applications and see if they influence correctly the
Network App behavior. Finally, he will be able to use
systematic exploration tools, such as model checkers, to
subject the Network App and the network it controls to a
large number of possible event orderings.

e Deployment and maintenance: the deployment phase
starts after the Network App is appropriately tested. At
this point in time the developer can configure different
deployment environments (if not occurred in the design
phase) and test the installation of the application. In this
phase testing and interaction as well with simulator is
still possible. If the Network App needs refinement, the
development cycle restarts with a new iteration.

These steps are supported by the NetIDE reference archi-
tecture (see Fig. 4) which includes two main components:

e NetIDE Developer Toolkit: a set of integrated tools
in an Eclipse-like environment that allows the devel-
opers to code, configure, and deploy Network Apps.
The Developer Toolkit will include: editors for network
programming languages like Frenetic, an IRF Transformer
API that supports the development of transformers from
programming languages to IRF, a number of tools that
support the configuration and deployment of Network
Apps embedding IRF programs, and other support tools.

e NetIDE Network App Engine: a runtime environment
that hosts Network Apps and acts as virtual controller of
the network, leveraging existing network controllers. The
Network App Engine will include: a container for Net-
work Apps deployed and managed through the Developer
Toolkit; an interpreter acting as a virtual controller and
execute IRF logic over the real and simulated networks;
a NetIDE Network Driver API that allows the develop-
ment of different drivers to connect the interpreter to
different OpenFlow controllers (e.g. Floodlight) and SDN
frameworks (e.g. Junos); a number of services developed
on top of the interpreter to facilitate the management
and debugging of network resources and Network Apps
independently from the underlying SDN-like technology.

With such an IDE, the developer uses his preferred editor
(and underlying language) to write the network control plane
logic for his Network App. The control plan logic is neutrally
represented using the NetIDE IRF through a language—specific
transformer. The developer then uses the NetIDE Network App



Configurator to wrap the control plane logic in an App con-
tainer and defines how to deploy it. As result, the control logic
wrapped in a Network App is now ready to be deployed in the
NetIDE Network App Engine. The deployed control logic is
then executed by the interpreter that issues instructions. The
instructions, through a specific network driver, are passed to a
given controller or network device, e.g. using the OpenFlow
API in case of OpenFlow devices. During the execution of the
control logic, heterogeneous network resources are managed
to ensure consistency across the network. System services like
the garbage collector ensure that resources are freed if no more
in use; profiler and debugger help monitoring the control logic
behavior, while the resource manager provides feedback about
network resources usage to the Network App (or the virtual
controller) in pursuit of higher performance.

V. CONCLUSION & FUTURE WORKS

Despite the big hype behind Software-Defined Networking,
most of the proposed frameworks suffer from the limitations
of being hardly interoperable. This issue severely limits the
huge potential of innovation SDN may unveil. One of the
most critical limitations of current solutions is the need for
network applications developers to re—code from scratch their
solutions if they want to have them running on a different
controller platform. The adoption of vendor-agnostic software-
development frameworks supporting the whole development
lifecycle for SDN is therefore highly desirable.

In this paper we presented the concepts behind NetIDE, an
integrated development environment for portable network apps,
which aims at supporting network program developers by re-
ducing the development time and complexity through a single,
integrated solution that covers requirements, design, coding,
deployment, testing and debugging of SDN applications. Ne-
tIDE aims at becoming the one—stop solution for developing
network control plane programs which are independent from
programmable network apparatus vendors as well as from the
programming language used to develop network programs.

In next future — January 2014 — the concepts presented
in this paper will be the starting point for a FP7 research
project — called as well NetIDE. Through the project we
will explore the feasibility of our concepts and focus on the
core research of defining IRF and on building the tools to
support our vision. The IRF, the NetIDE Developer toolkit
and the NetIDE Network App engine will be as well validated
into three industrial scenarios. This will allow us to drive the
research focusing on actual requirements and constraints posed
by solutions used nowadays by telco and datacenter operators.

ACKNOWLEDGMENT

The authors would like to thank Joe Butler (Intel), Ladislav
Lhotka (CZ.NIC Labs), Gerard Nguengang (Thales), Bernhard
Schrider (Fujitsu) and Maciej Kuzniar (EPFL) for their valu-
able feedbacks and inputs about the NetIDE concept.

REFERENCES

[11 H. Chao and B. Liu, High Performance Switches and Routers.
Wiley, 2007. [Online]. Available: http://books.google.it/books?id=
dswlfaspYiAC

(2]

(31

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

N. Foster, A. Guha, M. Reitblatt, A. Story, M. Freedman, N. Katta,
C. Monsanto, J. Reich, J. Rexford, C. Schlesinger, D. Walker, and
R. Harrison, “Languages for software-defined networks,” Communica-
tions Magazine, IEEE, vol. 51, no. 2, pp. 128-134, 2013.

A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-
level reactive network control,” in Proc. of ACM HotSDN, 2012.

N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proc. of ACM CoNEXT, 2012.

B. Pfaff, B. Forbes, C. Anderson, D. Wendlandt, E. Lazutkin, J. Pettit,
K. Amidon, M. Casado, M. Kobayashi, N. Gude, P. Balland, R. Price,
S. Seetharaman, T. Koponen, and T. Rice.

T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proc. of ACM WREN,
2009.

A. Voellmy and P. Hudak, “Nettle: taking the sting out of programming
network routers,” in Proc. of ACM PADL, 2011.

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software defined networks,” in Proc. of USENIX NSDI, 2013.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the Production Network Be the Testbed?”
in Proc. of USENIX OSDI, 2010.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proc. of ACM
HotSDN, 2012.

The Linux Foundation. OpenDaylight Project. [Online]. Available:
http://opendaylight.org/

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore, “Oflops:
an open framework for openflow switch evaluation,” in Proceedings of
the 13th international conference on Passive and Active Measurement,
ser. PAM’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 85-95.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-28537-0_9

V. Yazici. (2013) Benchmarking mininet. [Online]. Available: http:
/Ivlkan.com/blog/post/2013/04/19/benchmarking-mininet/

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and
S. T. King, “Debugging the data plane with anteater,” in Proc. of ACM
SIGCOMM, 2011.

P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
static checking for networks,” in Proc. of USENIX NSDI, 2012.

M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and J. Rexford, “A nice
way to test openflow applications,” in Proc. of USENIX NSDI, 2012.
M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kostié, “A
SOFT Way for OpenFlow Switch Interoperability Testing,” in Proc. of
ACM CoNEXT, 2012.

H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic Test
Packet Generation,” in Proc. of ACM CoNEXT, 2012.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proc. of
ACM HotSDN, 2012.

A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “OFRewind:
Enabling Record and Replay Troubleshooting for Networks,” in Proc.
of USENIX ATC, 2011.

C. Scott, A. Wundsam, S. Whitlock, A. Or, E. Huang, K. Zarifis, and
S. Shenker, “How Did We Get Into This Mess? Isolating Fault-Inducing
Inputs to SDN Control Software,” UC Berkeley, Tech. Rep., 2013.

P. Kazemian, M. Change, H. Zheng, G. Varghese, N. McKeown, and
S. Whyte, “Real Time Network Policy Checking Using Header Space
Analysis,” in Proc. of USENIX NSDI, 2013.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Ver-
iFlow: Verifying Network-Wide Invariants in Real Time,” in Proc. of
USENIX NSDI, 2013.



