
Is the Network Capable of Computation?

Peter Perešíni
EPFL

peter.peresini@epfl.ch

Dejan Kostić
Institute IMDEA Networks

dkostic@imdea.org

Abstract—Ensuring correct network behavior is hard. Previous
state of the art has demonstrated that analyzing a network
containing middleboxes is hard. In this paper, we show that
even using only statically configured switches, and asking the
simplest possible question – “Will this concrete packet reach the
destination?” – can make the problem intractable. Moreover,
we demonstrate that this is a fundamental property because a
network can perform arbitrary computations. Namely, we show
how to emulate the Rule 110 cellular automaton using only basic
network switches with simple features such as packet matching,
header rewriting and round-robin loadbalancing. This ultimately
means that analyzing dynamic network behavior can be as hard
as analyzing an arbitrary program.

I. INTRODUCTION

Correct network behavior is often taken for granted, but

ensuring it is a daunting task. It was previously shown that

statically analyzing the network and answering questions such

as “can host A talk to host B” can be NP-hard [11].

The networks are increasing in complexity, as well as in

the set of roles they are supposed to fulfill. Today’s computer

networks consist of equipment such as switches/routers1, and

various kinds of middleboxes (load-balancers, intrusion de-

tection systems, network address translators, etc.). Each of

these devices exposes traffic to a variety of features (packet

matching, packet rewriting, etc.). These features may, however,

interact in very complex ways. This means that analyzing dy-

namic network behavior (which cannot be checked statically)

is also becoming more and more difficult.

For example, in security, protocol interactions can pose

significant security risks amongst otherwise secure protocols

[9]. Currently, there is a lack of similar research on the

interaction of basic features of today’s networks. This gap

is becoming more important as software-defined networking,

mainly the OpenFlow protocol, is growing up in its popularity.

In this paper, we show that the complexity of the interactions

is inherent even in simple scenarios. We investigate the inter-

action between four simple network mechanisms – a packet

header matching, a packet header rewriting, unicast/multicast

forwarding and round robin load-balancing. On its own, each

of these mechanisms is fairly simple but their combination

might easily become hard to analyze.

1In this paper, we will use the terms switch and router interchangeably, both
meaning a device capable of matching packets according to some criteria and
forwarding them to one or more destinations.

A. Let me count it for you!

To illustrate that simple switch features might interact in

a complex way, we construct a binary counter i.e. a device

which can go through states 0, 1, 10, 11, 100, 101, . . . We

use a single switch with an ingress, egress and loopback2

link supporting following features: (i) matching packets on

(a combination of) header fields (i.e., either exact match

or wildcard for each field); (ii) support of different match

priorities (for overlapping match rules); and (iii) rewriting

packet headers and/or forwarding to a specific port based on

the matched rule.

We represent the value of the counter as a binary number

where each bit is stored in its own packet header field.3

When a packet enters on the ingress port, we clear the

packet by rewriting all applicable header fields to zeroes. The

increment by one operation is performed by matching the

longest suffix “0,1,1,1,. . . ,1,1,1” of header fields, rewriting it

into “1,0,0,0,. . . ,0,0,0”, and looping the packet. There are two

special cases: (i) all header fields are 0 – we rewrite the last

field to 1 and loop; (ii) all header fields are 1 – we forward

the packet to the output and finish the counting. The rules are

summarized in Figure 1.

Our example shows that we can loop the packet for an

exponential time just by using a single switch with a single

loopback link – If the packet header contains n independent

fields, we can loop the packet 2n times using just n+2 rules.

Moreover, we can simply extend the example and emulate

k-ary counters, counting up to kn by using only Θ(n ∗ k)
rules. Such complicated packet behavior may definitely pose

a formidable opponent to the static network analyzers such as

header-space analysis [8]. We therefore ask the question “Is it

even possible to analyze a network consisting of few elements,

each one with simple but dynamic forwarding behavior?”.

B. Contributions

The core contribution of this paper is a description how to

build reusable boolean gates and memory buffers using just a

set of network devices with simple features such as packet

matching, header rewriting and round-robin load-balancing.

Furthermore, we demonstrate the use of these gates to effi-

ciently emulate Rule 110 cellular automaton [14] which is the

first step towards efficiently emulating tape-bounded Turing

machines. By providing an efficient emulation of Rule 110, we

2e.g. 2 switch ports connected to the same link
3It might not be possible to use all available header fields – for example

by clearing protocol field one invalidates all IPv4 fields978-1-4799-1270-4/13/$31.00 c© 2013 IEEE

rule match rewrite fwd

port Hn . . . H1 Hn . . .H1

init in ******* 0000000 loop

finish loop 1111111 ----- out

digit n loop 0111111 1000000 loop

digit n− 1 loop *011111 -100000 loop

digit n− 2 loop **01111 -10000 loop

digit n− 3 loop ***0111 --1000 loop

digits n− 4 to 3 · · · · · ·

digit 2 loop *****01 ---10 loop

digit 1 loop ******0 ----1 loop

Fig. 1: Binary n-digit counter. Rules are in the order of

deacreasing priority. “*” denotes a wildcard match and “-”

denotes no rewrite of the corresponding header field.

conjecture that providing the answer to the simplest possible

question – “Will this concrete packet reach the destination?”

– can be as hard as analyzing arbitrary computer programs.

Therefore, the main contribution of this paper does not entail

a new approach for ensuring network correctness. Instead, it

is a fundamental result suggesting the nonexistence of general

dynamic network analyzers.

II. MODELING THE NETWORK & BASIC BUILDING BLOCKS

In this section we informally introduce a network model

used through this paper. For the formal model, please refer to

the appendix in our Technical Report [13]. Additionally, we

present basic building blocks we use in the rest of the paper,

each building block corresponding to a statically configured

switch.

Our goal is to model an asynchronous computer network

with unbounded propagation time. The model of the network

is represented as a directed graph with nodes representing

switches and edges representing directed links. For the mod-

eling purpose, we abstract out the packet delivery over links.

Instead, we assume that each packet in the network is located

either at an ingress or at an egress queue of some switch.

We assume only simple FIFO queuing disciplines and atomic

packet processing, that is, the network state can change by

(i) atomically moving the first packet from a switch egress

queue to the connected switch’s ingress queue (i.e. sending

the packet over a link); (ii) atomically moving the first packet

from a switch ingress queue, enqueuing it (with possible

modifications) to all relevant egress queues and updating

switch state (i.e. switch packet processing).

From the switches, we require support for the following

packet processing capabilities:

Forward/multicast: The switch can be configured such that

any packet on one of its ports will be forwarded to one or

several other ports.

Header matching: The switch is able to match a packet

on a combination of header fields and forward it to the port

associated with the matching rule. We require support for

overlapping rules with different priorities.

Header rewriting: The switch is able to rewrite a subset of

header fields and then forward the packet.

Round-robin load-balancing: The switch provides a load-

balancing mechanism where the packet on the ingress port

is forwarded to one of the m egress ports. The output port

is chosen in a round-robin fashion, where the first packet is

forwarded to the first egress port, the second packet forwarded

to the second egress port, . . . the m + 1-th packet forwarded

again on the first egress port.

Although real switches might support any combination of

these features, it is enough for us to have just a single capabil-

ity per switch. We use the switches with such capabilities to

model basic building blocks for our Turing machine construc-

tion. We will call these building blocks gates (summarized in

Fig. 2) and each basic gate is easily implemented by a single

switch. We leave possible optimization of merging several of

these elements into a single switch as a future work. The gates

we use are as follows:

split: Copies a packet from one ingress link (also denoted

as input wire) to multiple output wires by using the multicast

capability.

merge: Accepts a packet on any input wire and forwards it

to the output.

rrobin: Packets on any input port should be forwarded

to one of several output wires in a round-robin fashion.

The element is implemented by a round-robin load-balancer

feature.

rewrite: Rewrite packet header field(s) of any incoming

packet with the new values and forward it to the output.

conditional: Emulate a simple decision-making process

using the packets by outputting the packet to one of the

outputs depending on the match. The element is realized as a

switch with two rules: (i) a high-priority yes rule matching

the condition on the header field; (ii) a low-priority no rule

that matches everything else (default rule).

join: The join4 is an element which filters a sequence

of packets and passes through only each m-th packet on the

input. It is implemented as rrobin with first m − 1 egress

ports “dead” (not connected to any link).

III. BOOLEAN FUNCTIONS

As a first step towards a Turing machine emulator, we

show a way to emulate a boolean circuit [1] – an acyclic

directed graph with n nodes with not incoming edges called

inputs, m nodes with no outgoing edges called outputs and

several other nodes called logical gates. We will call all edges

of a boolean circuit wires because of their representation in

hardware circuits. Each logical gate contains several incoming

edges, a single outgoing edge and performs a boolean function

over its inputs. In this paper, we will consider only logical

gates AND, OR and NOT as they are functionally complete and

one can construct any other logical gate out of them – in fact,

AND and NOT would be sufficient [7].

4similar to join in UML diagrams

(a) split (copy to mul-
tiple destinations)

(b) merge multi-
ple sources

(c) round robin (loops
through m outputs)

(d) header rewrite (sets
new packet header)

(e) conditional (f) join (pass through every
m-th packet)

Fig. 2: Pictograms of basic building blocks, each one can be implemented by a single switch.

(a) AND (b) OR

Fig. 3: Basic boolean operators (single-wire inputs)

A. Representing boolean circuits as computer networks

We represent each logical gate as a set of interconnected

switches (e.g., basic elements). Edges of the boolean circuit

graph are represented by network links. Although boolean

circuits use bits as input values, we cannot represent bits by

a packet header field – both AND and OR need in certain

situations to wait for both inputs before they can produce

the output. However, such “packet save” functionality is not

present in the switches. Instead, we take an approach similar

to the hardware implementation of boolean circuits and we

represent boolean values as the presence/absence of a single

packet on the link.

B. Simple and and or gates

For both and and or, we exploit the fact that rrobin

element cycles through its outputs. The key idea is simple –

and needs to produce a single packet on the output iff (if

and only if) it receives packets on both of its inputs. That is,

we need to drop the first packet (if any) and let through the

second packet (if any). This is a perfect match for a rrobin

gate with its first output link dead5 and the second output

representing the and output as illustrated in Fig. 3. Note that

while the and gate has the same hardware implementation

as the join (m = 2) gate, we will use two gates to make

the semantic distinction. The or can be realized in a similar

manner as the and, the only difference is that we exchange

the live and dead links.

C. Negations

This approach, as is, cannot handle negations. The not

gate would need to produce a packet iff there is no (and

will not be in the future!) packet on the input. This is

simply impossible to achieve in asynchronous networks with

unbounded propagation time. To address this issue, we develop

a two-wire bit representation. In this representation, each input

5We assume that round-robin load-balancing algorithm in the switch does
not skip over dead links. Otherwise, we may utilize an additional switch
instructed to drop any incoming packet

(a) NOT (b) AND (c) OR

Fig. 4: Boolean operators using the two-wire representation.

of a boolean circuit consists of two network links, each link

corresponding to one of the two possible bit values. The

boolean circuit input is represented as a single packet on

exactly one of the wires. If the value of input x is one, the

input consists of a single packet on the wire denoted “x”.

Otherwise (the value is zero), the input consists of a single

packet on the wire denoted “¬x”.

The not gate in this new representation is simply an

exchange of the wires (Fig. 4a). For the and and or gates,

we reuse the previously introduced single-wire and/or gates

and combine them using De Morgan identities ¬(x ∧ y) =
(¬x)∨ (¬y), ¬(x∨y) = (¬x)∧ (¬y) to produce the two-wire

gates (Fig. 4b, 4c) [6].

IV. REPEATING COMPUTATIONS – REUSING GATES

MULTIPLE TIMES

If we want to emulate a (possibly exponentially long) com-

putation of a Turing machine with a network of polynomial

size, we need to reuse the same gates several times with dif-

ferent inputs. This, however, poses a new challenge – we need

to clear/reset the internal state of these gates. In particular, the

elements needed to be reset are all rrobin elements as they

end up in different states depending on the number of input

packets. Additionally, we need a mechanism for slowing down

some packets – sending a second set of inputs to the gates

too fast can end up with some of the new packets interfering

with the previous, still-running, computation. In this section,

we address these two challenges by designing clearable gates

and a new special element which can “buffer” packets.

A. The art of clearing

In order to reuse gates, we need to reset any changes to

the internal state of our gates. This is trivial for a not gate,

but poses a significant challenge to and and or gates, which

contain state of the round-robin algorithm inside. To address

this, we introduce a special clearing packet(s) that can be

distinguished from information packets by matching on some

header field.

To illustrate the mechanism of clearing, consider the and

Fig. 5: Clearable AND gate. Original AND is in black, red

part (dashed) waits until the circuit finishes computing and

blue (dotted) part is responsible for clearing.

gate from Fig. 4b – we extend this gate to a self-clearing

and gate in Fig. 5. In the new gate, the clearing packet needs

to be created after the original rrobin gates finished the

computation, i.e. processed all packets on their inputs. As we

know that there will be exactly two input packets in total

on four input wires, we can identify this situation by (i)
(red part of Fig. 5) collecting notifications – (copies) of all

packets output by rrobin elements representing AND/OR,

(ii) (blue part of Fig. 5) start clearing after we receive all

notifications. As there will be exactly two notifications on the

four notification links, we introduce new join element which

passes each second packet. Note that the newly introduced

join internally contains a new rrobin which potentially

must be reset. This rrobin is, however, reset to its initial

state after receiving the second packet and we do not need to

clear it explicitly.

The output of the join is then converted into a clearing

packet by header rewriting. We split this clearing packet to

clear both rrobin elements in parallel. A single rrobin

element can be easily reset to its initial state by processing

a specific number of packets. We therefore employ a looping

trick where we loop the clearing packet enough times that after

the last iteration, the element will be in the initial state. We do

this by intercepting rrobin outputs and looping the clearing

packet on all but the last rrobin output link.

Finally, after both clearing packets for both rrobins finish

looping, we wait for the last one by using join. The result is

a single packet indicating that the circuit was cleared. Again

note that newly introduced join does not need an explicit

reset.

Observation: Clearing does not interfere with the computation.

Clearing starts after both rrobin elements finish processing

their inputs. The rest of the computation (i.e. forwarding

packets to the output) is unaffected by parallel cleaning as

there are no more elements with the internal state.
Observation: Clearing eventually finishes and when the circuit

outputs a signal, it is ready to be reused. After receiving

all (two) input packets, they will be eventually forwarded

to join and thus eventually reach the clearing rewrite.

Subsequently, the newly split packets will both loop a finite

number of times before being forwarded to the final join.

By looping, these packets will reset both rrobin elements

and join elements self-reset right after they place a packet to

their output queue (and before the packet is forwarded further).

B. Waiting – because clearing is not enough!

To correctly repeat calculations, clearing the state is not

enough because the circuit is quite brittle to race-conditions –

if we send new inputs while the circuit is clearing, the clearing

can interfere with the ongoing computation. Therefore, we

need an element which can hold the inputs till we know it

is safe to send them further. To address this, we create a new

buffer element. The challenge is to perform the buffering

task without any direct control over switch buffers – the only

way to prevent a packet from being processed by the switch

and sent on the output link is to drop it.
The key idea behind the buffer element (Fig. 6) is that we

actually drop packets and then “recreate” them when needed.

Of course, we are not able to fully recover the original packet

with all headers and data. However, this is not needed – we

can simply copy any other existing packet as in our case only

the presence or absence of a packet matters6. The building

block of the buffer element are two join elements, one

for each input wire (x,¬x). Both of these joins are wait

for two incoming packets – the input packet and a packet on

the signal wire telling that the buffer can be released. Upon

receiving both the input and the signal packet (in any order),

exactly on of the joins will let through last of these packets.

At this state we (i) release the buffer by sending this packet to

the corresponding output; (ii) reset clear the buffer. Here, we

again utilize the special clearing packet. However, depending

on which half of the circuit needs to be cleared, we separate

the two scenarios by using a different header for the clearing

packet as displayed in blue/red color in Figure 6.
Observation: Buffer does not pass any packet until it receives

both the input and the signal. Trivially, a single packet (either

the input or the signal) is not able to pass any of the join

elements.
Observation: Buffer is cleared properly and signals its clear-

ing only when it is safe to reuse it. We will use the fact that

packets following the same path cannot be reordered (they

cannot be reordered on links and we assume switches with

FIFO input/output port queues).

Without a loss of generality, assume an input packet on wire

x. After receiving packets on both x and signal, the join

(2) will pass through the later packet while join (3) will

drop the signal. Subsequently, the passed packet continues to

6Actually, it is also important that the packet is created as information and
not clearing packet. We copy only information packets.

Fig. 6: Buffer (holds value until a signal is received). De-

pending on the input, either blue (input=x) or red (input=¬x)

clearing part is used.

split (4) where it is forwarded to the output and looped

back as a clearing packet. The clearing packet is then split

again at (1) with one part (left branch) being sent to join

(5) and the second part (right branch) going resetting join

(3) and further looping before finally reaching join (5).

Notice that for buffer functioning properly, the clearing

packet (right branch) must reach input join (3) after the

signal packet. If we simply looped directly from (4) to (3) and

bypassed (1), the signal could take too long to travel from (1)

to (3) and the clearing packet would be there first. Instead, our

trick is to use merge and then split to guarantee that at the

time we created the clearing packet, the original signal packet

must have reached split (1) and the clearing packet will be

placed behind it on all FIFO queues towards join (3).

V. FROM CIRCUITS TO CELLULAR AUTOMATA

The final step in showing the complexity of possible net-

work computation is to show that clearable logical gates and

buffer are sufficient to emulate Rule 110 cellular automaton.

Rule 110 Rule 110 [14] is a simple linear cellular automaton

(an array of cells) with each cell holding a binary value.

Rule 110 computation consists of discrete steps, each step

synchronously updating values of all cells. In each step, each

cell looks at its own value and the values of its neighbors

and updates its value according to the function from Fig.

7. Although Rule 110 is a simple automaton, it has been

shown that it is capable of emulating the first n steps of

a Turing machine in a polynomial number of cells [12].

Thus, by emulating Rule 110 using a polynomial number of

network elements, we will be able to emulate the first n steps

of a Turing machine in polynomial network size. This will

prove that not only networks are capable of emulating Turing

machines but that the emulation is also semi-efficient.

Rule 110 emulator We observe that the Rule 110 func-

tion in Fig. 7 can be translated into a boolean circuit as

f(xi−1, xi, xi+1) = (¬xi−1 ∧ xi+1) ∨ (¬xi ∧ xi+1) ∨ (xi ∧

¬xi+1). Thus, by composing clearable logical gates, we can

xi−1 xi xi+1 new xi

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Fig. 7: Rule 110 - a simple linear automaton

create a clearable rule110 gate.

We create Rule 110 automaton as an array of interconnected

circuits, each circuit representing one cell of the automaton.

Each circuit is composed of a buffer holding the input values,

the rule110 gate and the output value buffer.7 The inputs of

rule110 gate are connected to input buffers of the current

and the neighboring cells, while the output is connected to the

output buffer. Finally, to enable the multi-step computation, we

send the values of output buffers back to the input buffers and

thus create a loop. The overall structure of the construction is

shown in Fig. 8.

Observation: The emulator construction in Fig. 8 emulates the

Rule 110 cellular automaton in synchronous steps.

It is easy to see that the circuit is iteratively computing

Rule 110 cell values from the previous values. What is more

challenging is the proof that cells are updated synchronously

and that we do not feed values to the circuit before it acknowl-

edged clearing. We use the natural split of the circuit into

three stages: (i) input buffers; (ii) Rule 110; and (iii) output

buffers. When the computation begins, all packets are in stage

(i). After receiving the “start” packet, the computation can

proceed to stages (ii) and (iii). However, the output buffers

in stage (iii) will hold all packets until all input buffers and

all rule110 circuits acknowledge clearing. At this moment

there are no packets in stage (i) and (ii)– the input buffers and

rule110s are cleared. Thus, the output buffers can forward

the packets back to the input (stage (i)). Here, the packets

will be held until all output buffers acknowledge clearing and

there is not packet in stage (iii). Only after this, the new

round of computation may begin. Thus, we proved that the

circuit is updated synchronously and that there is no unwanted

interference between the packets in different stages.

VI. FUTURE WORK

There is certainly room for improving our results. In par-

ticular, we believe that using the similar idea as in Rule

110 emulator, it is possible to construct an emulator of

tape-bounded Turing machines. Such emulator, if constructed,

would be capable of computing exponential number of steps

in polynomial network size, achieving efficient emulation. We

will leave this construction as a future work.

7We need to have two sets of buffers (input and output) because the
computation is only loosely synchronized and we do not want results to
interfere with inputs (e.g., by receiving new buffer value before the buffer
is completely cleared).

Fig. 8: Rule 110 emulator (showing only cells n − 1, n, and

n+ 1). Black part is responsible for one step of computation

of cell n, grey parts represents different cells. Dashed part is

responsible for synchronizing and advancing the computation.

Another area of potential future work is optimization of

the created network – in the current construction one switch

for each single element. This unnecessarily wastes resources

because switches typically have many ports and complicated

packet processing pipelines. It is therefore interesting to ex-

plore this area to provide much smaller building blocks (e.g.,

by packing one whole Rule 110 cell into a single switch with

several loopback links).

Finally, the constructs we show in this paper are quite brittle

– they heavily depend on no other packets being forwarded

by the switch. It is an interesting future direction to see if we

can add some robustness to the design.

VII. RELATED WORK

We are certainly not the first to suggest that systems with

simple features might interact in a complex way. Protocol

interaction from a security viewpoint was analyzed in [9].

Feature interaction was also studied in telecommunication

services [3], [4]. Unlike these studies, we are not trying to

come up with a solution to the feature interaction problem.

Indeed, we take an opposite way – we are trying to exploit

the interaction of simple features and show that in general it

might be very hard to analyze.

Parasitic computing [2] demonstrates the potential of solv-

ing SAT by network checksumming. Implicit simulations using

messaging protocols [10] demonstrate the use of the ICMP

protocol as another way to perform simple computations using

the network. Both [2] and [10], however, need a host which

creates the packet and the network works just as a simple filter

of results. In contrast, we do not require intelligent endhosts,

and still perform Rule 110 emulation in the network. Contem-

poraneously, Chiesa et al. show that BGP configurations can

emulate logic circuits [5].
The problem of analyzing the network behavior was tackled

by [15], [11]. These tools, however, perform only a static

analysis of the network. They are not able to analyze the

dynamic behavior of round-robin loadbalancers. Instead, for

the analysis, they overapproximate the loadbalancing primitive

simply as a multicast. Our result implies that this overapprox-

imation trick enables them to predict the network behavior

much faster than a dynamic analyzer could do, albeit at the

cost of precision.

VIII. CONCLUSIONS

It is common wisdom that debugging networks is hard –

analyzing a network containing middleboxes is commonly

understood to be hard. In fact, it was previously shown that

statically analyzing a network composed just of switches and

answering questions such as “can host A talk to host B” can

be NP-hard [11]. In this paper, we further move the boundary

and show that the ability to analyze the dynamic behavior

of statically configured networks consisting only of simple

switches is equivalent to the ability of analyzing outcome of a

cellular automaton computation. We therefore conjecture that

a dynamic analysis of networks can be an intractable problem.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Research Council under the European

Union’s Seventh Framework Programme (FP7/2007-2013) /

ERC grant agreement 259110.

REFERENCES

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
2007. http://www.cs.princeton.edu/theory/complexity/circuitschap.pdf.

[2] A.-L. Barabasi, V. W. Freeh, H. Jeong, and J. B. Brockman. Parasitic
computing. Nature, 412(6850):894–897, Aug. 2001.

[3] T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman, and Y.-J.
Lin. The feature interaction problem in telecommunications systems. In
SETSS, 1989.

[4] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Fea-
ture interaction: a critical review and considered forecast. Computer

Networks, 41(1):115 – 141, 2003.
[5] M. Chiesa, L. Cittadini, G. D. Battista, L. Vanbevery, and S. Vissicchioy.

Computing with bgp: from routing conïňĄgurations to turing machines.
Technical report, 2012.

[6] I. M. Copi and C. Cohen. Introduction to logic. MacMillan, 1990.
[7] H. Enderton. A Mathematical Introduction to Logic, Second Edition.

Harcourt/Academic Press, 2001.
[8] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:

Static checking for networks. In NSDI, 2012.
[9] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the

chosen protocol attack. In Proceedings of the 5th International Workshop

on Security Protocols, 1998.
[10] G. Kohring. Implicit simulations using messaging protocols. Interna-

tional Journal of Modern Physics C, 14(2):203–213, 2003.
[11] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.

King. Debugging the data plane with anteater. In SIGCOMM, 2011.
[12] T. Neary and D. Woods. P-completeness of cellular automaton rule 110.

In ICALP, 2006.
[13] P. Peresini and D. Kostic. Is the network turing-complete? Technical

report, EPFL, 187131, 2013.
[14] S. Wolfram. Theory and Applications of Cellular Automata. World

Scientific, 1986.
[15] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson, and

J. Rexford. On static reachability analysis of ip networks. In INFOCOM,
2005.

