
Measuring the Impact of Adversarial Errors
on Packet Scheduling Strategies?

Antonio Fernández Anta1, Chryssis Georgiou2, Dariusz R. Kowalski3??, Joerg
Widmer1, and Elli Zavou1,4? ? ?

1 Institute IMDEA Networks
2 University of Cyprus

3 University of Liverpool
4 Universidad Carlos III de Madrid

Abstract. In this paper we explore the problem of achieving efficient packet
transmission over unreliable links with worst case occurrence of errors. In such
a setup, even an omniscient offline scheduling strategy cannot achieve stability
of the packet queue, nor is it able to use up all the available bandwidth. Hence,
an important first step is to identify an appropriate metric for measuring the ef-
ficiency of scheduling strategies in such a setting. To this end, we propose a rel-
ative throughput metric which corresponds to the long term competitive ratio
of the algorithm with respect to the optimal. We then explore the impact of the
error detection mechanism and feedback delay on our measure. We compare in-
stantaneous error feedback with deferred error feedback, that requires a faulty
packet to be fully received in order to detect the error. We propose algorithms
for worst-case adversarial and stochastic packet arrival models, and formally an-
alyze their performance. The relative throughput achieved by these algorithms is
shown to be close to optimal by deriving lower bounds on the relative through-
put of the algorithms and almost matching upper bounds for any algorithm in the
considered settings. Our collection of results demonstrate the potential of using
instantaneous feedback to improve the performance of communication systems
in adverse environments.

1 Introduction
Motivation. Packet scheduling [8] is one of the most fundamental problems in com-
puter networks. As packets arrive, the sender (or scheduler) needs to continuously make
scheduling decisions. Typically, the objective is to maximize the throughput of the link
or to achieve stability. Furthermore, the sender needs to take decisions without knowl-
edge of future packet arrivals. Therefore, many times this problem is treated as an online
scheduling problem [4, 10] and competitive analysis [1, 13] is used to evaluate the per-
formance of proposed solutions: the worst-case performance of an online algorithm is
compared with the performance of an offline optimal algorithm that has a priori knowl-
edge of the problem’s input.

In this work we focus on online packet scheduling over unreliable links, where
packets transmitted over the link might be corrupted by bit errors. Such errors may, for
? This research was supported in part by the Comunidad de Madrid grant S2009TIC-1692, Span-

ish MICINN/MINECO grant TEC2011-29688-C02-01, and NSF of China grant 61020106002.
?? This work was performed during the visit of D. Kowalski to Institute IMDEA Networks

? ? ? Partially supported by FPU Grant from MECD

example, be caused by an increased noise level or transient interference on the link, that
in the worst case could be caused by a malicious entity or an attacker. In the case of an
error the affected packets must be retransmitted. To investigate the impact of such errors
on the scheduling problem under study and provide provable guarantees, we consider
the worst case occurrence of errors, that is, we consider errors caused by an omniscient
and adaptive adversary [12]. The adversary has full knowledge of the protocol and its
history, and it uses this knowledge to decide whether it will cause errors on the packets
transmitted in the link at a certain time or not. Within this general framework, the packet
arrival is continuous and can either be controlled by the adversary or be stochastic.

Contributions. Packet scheduling performance is often evaluated using throughput,
measured in absolute terms (e.g., in bits per second) or normalized with respect to the
bandwidth (maximum transmission capacity) of the link. This throughput metric makes
sense for a link without errors or with random errors, where the full capacity of the link
can be achieved under certain conditions. However, if adversarial bit errors can occur
during the transmission of packets, the full capacity is usually not achievable by any
protocol, unless restrictions are imposed on the adversary [2, 12]. Moreover, since a bit
error renders a whole packet unusable (unless costly techniques like PPR [5] are used),
a throughput equal to the capacity minus the bits with errors is not achievable either. As
a consequence, in a link with adversarial bit errors, a fair comparison should compare
the throughput of a specific algorithm to the maximum achievable amount of traffic that
any protocol could send across the link. This introduces the challenge of identifying an
appropriate metric to measure the throughput of a protocol over a link with adversarial
bit errors.
Relative throughput: Our first contribution is the proposal of a relative throughput met-
ric for packet scheduling algorithms under unreliable links (Section 2). This metric is a
variation of the competitive ratio typically considered in online scheduling. Instead of
considering the ratio of the performance of a given algorithm over that of the optimal
offline algorithm, we consider the limit of this ratio as time goes to infinity. This corre-
sponds to the long term competitive ratio of the algorithm with respect to the optimal.
Problem outline: We consider a sender that transmits packets to a receiver over an un-
reliable link, where the errors are controlled by an adversary. Regarding packet arrivals
(at the sender), we consider two models: (a) the arrival times and their sizes follow
a stochastic distribution, and (b) the arrival times and their sizes are also controlled
by an adversary. The general offline version of our scheduling problem, in which the
scheduling algorithm knows a priori when errors will occur, is NP-hard. This further
motivates the need for devising simple and efficient online algorithms for the problem
we consider.
Feedback mechanisms: Then, moving to the online problem requires detecting the pack-
ets received with errors, in order to retransmit them. The usual mechanism [7], which
we call deferred feedback, detects and notifies the sender that a packet has suffered an
error after the whole packet has been received by the receiver. It can be shown that,
even when the packet arrivals are stochastic and packets have the same length, no on-
line scheduling algorithm with deferred feedback can be competitive with respect to
the offline one. Hence, we center our study a second mechanism, which we call in-
stantaneous feedback. It detects and notifies the sender of an error the moment this

Arrivals Feedback Upper Bound Lower Bound

Deferred 0 0

Adversarial Instantaneous TAlg ≤ γ/(γ + γ) TSL−Pr ≥ γ/(γ + γ)

TLL = 0, TSL ≤ 1/(γ + 1)

Deferred 0 0

Stochastic Instantaneous TAlg ≤ γ/γ TCSL−Pr ≥ γ/(γ + γ),
if λp`min ≤ γ/(2γ)

TAlg ≤ max
{
λp`min,

γ
(γ+γ)

}
if p < q TCSL−Pr ≥ min {λp`min, γ/γ},

otherwise
TLL = 0, TSL ≤ 1/(γ + 1)

Table 1: Summary of results presented. The results for deferred feedback are for one packet
length, while the results for instantaneous feedback are for 2 packet lengths `min and `max. Note
that γ = `max/`min, γ = bγc, λp is the arrival rate of `min packets, and p and q = 1 − p are
the proportions of `min and `max packets, respectively.

error occurs. This mechanism can be thought of as an abstraction of the emerging Con-
tinuous Error Detection (CED) framework [11] that uses arithmetic coding to provide
continuous error detection. The difference between deferred and instantaneous feed-
back is drastic, since for the instantaneous feedback mechanism, and for packets of the
same length, it is easy to obtain optimal relative throughput of 1, even in the case of
adversarial arrivals. However, the problem becomes substantially more challenging in
the case of non-uniform packet lengths. Hence, we analyze the problem for the case of
packets with two different lengths, `min and `max, where `min < `max.

Bounds for adversarial arrivals: We show (Section 3), that an online algorithm with
instantaneous feedback can achieve at most almost half the relative throughput with
respect to the offline one. It can also be shown that two basic scheduling policies, giving
priority either to short (SL – Shortest Length) or long (LL – Longest Length) packets,
are not efficient under adversarial errors. Therefore, we devise a new algorithm, called
SL-Preamble, and show that it achieves the optimal online relative throughput. Our
algorithm, transmits a “sufficiently” large number of short packets while making sure
that long packets are transmitted from time to time.

Bounds for stochastic arrivals: In the case of stochastic packet arrivals (Section 4), as
one might expect, we obtain better relative throughput in some cases. The results are
summarized in Table 1. We propose and analyze an algorithm, called CSL-Preamble,
that achieves relative throughput that is optimal. This algorithm schedules packets ac-
cording to SL-Preamble, giving preference to short packets depending on the param-
eters of the stochastic distribution of packet arrivals. (If the distribution is not known,
then one needs to use the algorithm developed for the case of adversarial arrivals that
needs no knowledge a priori.) We show that the performance of algorithm CSL-Preamble
is optimal for a wide range of parameters of stochastic distributions of packets arrivals,
by proving a matching upper bound for the relative throughput of any algorithm in this

setting.(Analyzing algorithms yields lower bounds on the relative throughput, while
analyzing adversarial strategies yields upper bounds on the relative throughput.)
A note on randomization: All the proposed algorithms are deterministic. Interestingly, it
can be shown that using randomization does not improve the results; the upper bounds
already discussed hold also for the randomized case.
To the best of our knowledge, this is the first work that investigates in depth the im-
pact of adversarial worst-case link errors on the throughput of the packet scheduling
problem. Collectively, our results (see Table 1) show that instantaneous feedback can
achieve a significant relative throughput under worst-case adversarial errors (almost half
the relative throughput that the offline optimal algorithm can achieve). Furthermore, we
observe that in some cases, stochastic arrivals allow for better performance.

Omitted results, proofs and discussion can be found in the full version [3].

Related work. A vast amount of work exists for online (packet) scheduling. Here we
focus only on the work that is most related to ours. For more information the reader can
consult [9] and [10]. The work in [6] considers the packet scheduling problem in wire-
less networks. Like our work, it looks at both stochastic and adversarial arrivals. Unlike
our work though, it considers only reliable links. Its main objective is to achieve maxi-
mal throughput guaranteeing stabiliy, meaning bounded time from injection to delivery.
The work in [2] considers online packet scheduling over a wireless channel, where both
the channel conditions and the data arrivals are governed by an adversary. Its main ob-
jective is to design scheduling algorithms for the base-station to achieve stability in
terms of the size of queues of each mobile user. Our work does not focus on stability,
as we assume errors controlled by an unbounded adversary that can always prevent it.
The work in [12] considers the problem of devising local access control protocols for
wireless networks with a single channel, that are provably robust against adaptive ad-
versarial jamming. At certain time steps, the adversary can jam the communication in
the channel so that the wireless nodes do not receive messages (unlike our work, where
the receiver might receive a message, but it might contain bit errors). Although the
model and the objectives of this line of work is different from ours, it shares the same
concept of studying the impact of adversarial behavior on network communication.

2 Model
Network setting. We consider a sending station transmitting packets over a link. Pack-
ets arrive at the sending station continuously and may have different lengths. Each
packet that arrives is associated with a length and its arrival time (based on the station’s
local clock). We denote by `min and `max the smallest and largest lengths, respectively,
that a packet may have. We use the notation γ = `max/`min, γ = bγc and γ̂ = dγe−1.
The link is unreliable, that is, transmitted packets might be corrupted by bit errors. We
assume that all packets are transmitted at the same bit rate, hence the transmission time
is proportional to the packet’s length.

Arrival models. We consider two models for packet arrivals.
Adversarial: The packets’ arrival time and length are governed by an adversary. We
define an adversarial arrival pattern as a collection of packet arrivals caused by the
adversary.

Stochastic: We consider a probabilistic distribution Da, under which packets arrive at
the sending station and a probabilistic distribution Ds, for the length of the packets. In
particular, we assume packets arriving according to a Poisson process with parameter
λ > 0. When considering two packet lengths, `min and `max, each packet that arrives
is assigned one of the two lengths independently, with probabilities p > 0 and q > 0
respectively, where p+ q = 1.
Packet bit errors. We consider an adversary that controls the bit errors of the pack-
ets transmitted over the link. An adversarial error pattern is defined as a collection of
error events on the link caused by the adversary. More precisely, an error event at time
t specifies that an instantaneous error occurs on the link at time t, so the packet that
happens to be on the link at that time is corrupted with bit errors. A corrupted packet
transmission is unsuccessful, therefore the packet needs to be retransmitted in full. As
mentioned before, we consider an instantaneous feedback mechanism for the notifica-
tion of the sender about the error. The instant the packet suffers a bit error the sending
station is notified (hence it can stop transmitting the remainder of the packet, if any).

The power of the adversary. Adversarial models are typically used to argue about
the algorithm’s behavior in worst-case scenarios. In this work we assume an adaptive
adversary that knows the algorithm and the history of the execution up to the current
point in time. In the case of stochastic arrivals, this includes all stochastic packet arrivals
up to this point, and the length of the packets that have arrived. However it only knows
the distribution but neither the exact timing nor the length of the packets arriving beyond
the current time.

Note that in the case of deterministic algorithms, in the model of adversarial arrivals
the adversary has full knowledge of the computation, as it controls both packet arrivals
and errors, and can simulate the behavior of the algorithm in the future (there are no ran-
dom bits involved in the computation). This is not the case in the model with stochastic
arrivals, where the adversary does not control the timing of future packet arrivals, but
knows only about the packet arrival and length distributions.

Efficiency metric: Relative throughput. Due to dynamic packet arrivals and adver-
sarial errors, the real link capacity may vary throughout the execution. Therefore, we
view the problem of packet scheduling in this setting as an online problem and we pur-
sue long-term competitive analysis. Specifically, let A be an arrival pattern and E an
error pattern. For a given deterministic algorithm Alg, let LAlg(A,E, t) be the total
length of all the successfully transferred (i.e., non-corrupted) packets by time t under
patterns A and E. Let OPT be the offline optimal algorithm that knows the exact ar-
rival and error patterns before the start of the execution. We assume that OPT devises
an optimal schedule that maximizes at each time t the successfully transferred packets
LOPT(A,E, t). Observe that, in the case of stochastic arrivals, the worst-case adver-
sarial error pattern may depend on stochastic injections. Therefore, we view E as a
function of an arrival pattern A and time t. In particular, for an arrival pattern A we
consider a function E(A, t) that defines errors at time t based on the behavior of a
given algorithm Alg under the arrival pattern A up to time t and the values of function
E(A, t′) for t′ < t.

Let A denote a considered arrival model, i.e., a set of arrival patterns in case of
adversarial, or a distribution of packet injection patterns in case of stochastic, and let

E denote the corresponding adversarial error model, i.e., a set of error patterns derived
by the adversary, or a set of functions defining the error event times in response to
the arrivals that already took place in case of stochastic arrivals. In case of adversarial
arrivals, we require that any pair of patternsA ∈ A andE ∈ E occurring in an execution
must allow non-trivial communication, i.e., the value ofLOPT(A,E, t) in the execution
is unbounded with t going to infinity. In case of stochastic arrivals, we require that
any adversarial error function E ∈ E applied in an execution must allow non-trivial
communication for any stochastic arrival pattern A ∈ A.

For arrival pattern A, adversarial error function E and time t, we define the relative
throughput TAlg(A,E, t) of a deterministic algorithm Alg by time t as:

TAlg(A,E, t) =
LAlg(A,E, t)

LOPT(A,E, t)
.

For completeness, TAlg(A,E, t) equals 1 if LAlg(A,E, t) = LOPT(A,E, t) = 0.
We define the relative throughput of Alg in the adversarial arrival model as:

TAlg = inf
A∈A,E∈E

lim
t→∞

TAlg(A,E, t) ,

while in the stochastic arrival model it needs to take into account the
random distribution of arrival patterns in A, and is defined as follows:

TAlg = inf
E∈E

lim
t→∞

EA∈A[TAlg(A,E, t)] .

To prove lower bounds on relative throughput, we compare the performance of a
given algorithm with that of OPT. When deriving upper bounds, it is not necessary to
compare the performance of a given algorithm with that of OPT, but instead, with the
performance of some carefully chosen offline algorithm OFF. As we demonstrate later,
this approach leads to accurate upper bound results.

Finally, we consider work conserving online scheduling algorithms, in the follow-
ing sense: as long as there are pending packets, the sender does not cease to schedule
packets. Note that it does not make any difference whether one assumes that offline al-
gorithms are work-conserving or not, since their throughput is the same in both cases (a
work conserving offline algorithm always transmits, but stops the ongoing transmission
as soon as an error occurs and then continues with the next packet). Hence for simplicity
we do not assume offline algorithms to be work conserving.

3 Adversarial Arrivals
This section focuses on adversarial packet arrivals. First, observe that it is relatively
easy and efficient to handle packets of only one length.

Proposition 1. Any work conserving online scheduling algorithm with instantaneous
feedback has optimal relative throughput of 1 when all packets have the same length.

3.1 Upper Bound for at least Two Packet Lengths
Let Alg be any deterministic algorithm for the considered packet scheduling problem.
In order to prove upper bounds, Alg will be competing with an offline algorithm OFF.
The scenario is as follows. We consider an infinite supply of packets of length `max
and initially assume that there are no packets of length `min. We define as a link error
event, the point in time when the adversary corrupts (causes an error to) any packet

that happens to be in the link at that specific time. We divide the execution in phases,
defined as the periods between two consecutive link error events. We distinguish 2 types
of phases as described below and give a description for the behavior of the adversarial
models A and E . The adversary controls the arrivals of packets at the sending station
and error events of the link, as well as the actions of algorithm OFF. The two types of
phases are as follows:
1. a phase in which Alg starts by transmitting an `max packet (the first phase of the

execution belongs to this class). Immediately after Alg starts transmitting the `max
packet, a set of γ̂ `min packets arrive, that are scheduled and transmitted by OFF.
After OFF completes the transmission of these packets, a link error occurs, so Alg
cannot complete the transmission of the `max packet (more precisely, the packet
undergoes a bit error, so it needs to be retransmitted). Here we use the fact that
γ̂ < γ.

2. a phase in which Alg starts by transmitting an `min packet. In this case, OFF trans-
mits an `max packet. Immediately after this transmission is completed, a link er-
ror occurs. Observe that in this phase Alg has transmitted successfully several `min
packets (up to γ of them).
Let A and E be the specific adversarial arrival and error patterns in an execution of

Alg. Let us consider any time t (at the end of a phase for simplicity) in the execution.
Let v1 be the number of phases of type 1 executed by time t. Similarly, let v2(j) be the
number of phases of type 2 executed by time t in which Alg transmits j `min packets,
for j ∈ [1, γ]. Then, the relative throughput can be computed as follows.

TAlg(A,E, t) =
`min

∑γ
j=1 jv2(j)

`max
∑γ
j=1 v2(j) + `minγ̂v1

· (1)

From the arrival pattern A, the number of `min packets injected by time t is exactly
γ̂v1. Hence,

∑γ
j=1 jv2(j) ≤ γ̂v1. It can be easily observed from Eq. 1 that the relative

throughput increases with the average number of `min packets transmitted in the phases
of type 2. Hence, the throughput would be maximal if all the `min packets are used in
phases of type 2 with γ packets. With the above we obtain the following theorem.

Theorem 1. The relative throughput of Alg under adversarial patterns A and E and
up to time t is at most γ

γ+γ ≤
1
2 (the equality holds iff γ is an integer).

3.2 Lower Bound and SL-Preamble Algorithm
Two natural scheduling policies one could consider are the Shortest Length (SL) and
Longest Length (LL) algorithms; the first gives priority to `min packets, whereas the
second gives priority to the `max packets. However, these two policies are not efficient
in the considered setting; LL cannot achieve a relative throughput more than 0 while
SL achieves at most T = 1

γ+1 . Therefore, we present algorithm SL-Preamble that tries
to combine, in a graceful and efficient manner, these two policies.
Algorithm description: At the beginning of the execution and whenever the sender is
(immediately) notified by the instantaneous feedback mechanism that a link error oc-
curred, it checks the queue of pending packets to see whether there are at least γ packets
of length `min available for transmission. If there are, then it schedules γ of them —
this is called a preamble — and then the algorithm continues to schedule packets us-
ing the LL policy. Otherwise, if there are not enough `min packets available, it simply
schedules packets following the LL policy.

Algorithm analysis (sketch): We show that algorithm SL-Preamble achieves a relative
throughput that matches the upper bound shown in the previous subsection, and hence,
it is optimal. According to the algorithm there are four types of phases that may occur.

1. Phase starting with `min packet and has length L < γ`min
2. Phase starting with `min packet and length L ≥ γ`min
3. Phase starting with `max packet and has length L < `max
4. Phase starting with `max packet and length L ≥ `max

For phases of type 1, SL-Preamble is not able to transmit successfully the γ packets
`min of the preamble, but clearly OPT is only able to complete at most as much work
(understood as the total length of sent packets). For phases of type 2 and 4, the amount
of work completed by OPT can be at most the work completed by SL-Preamble plus
`max (and hence the former is at most twice the latter). In the case of phases of type
3, SL-Preamble is not able to successfully transmit any packet, whereas OPT might
transmit up to γ̂`min packets. Amortizing the work completed by OPT in these phases
with those completed in the preambles of types 1 and 2 by algorithm SL-Preamble is the
most challenging part of the proof. This process is divided into two cases, depending
on whether the number of type 3 phases is bounded or not, leading to the following:

Theorem 2. The relative throughput of Algorithm SL-Preamble is at least γ
γ+γ .

4 Stochastic Arrivals

We now turn our attention to stochastic packet arrivals.

4.1 Upper Bounds for at least Two Packet Lengths

In order to find the upper bound of the relative throughput, we consider again an arbi-
trary work conserving algorithm Alg. Recall that we assume that λp > 0 and λq > 0,
which implies that there are in fact injections of packets of both lengths `min and `max
(recall the definitions of λ, p and q from Section 2). We define the following adversarial
error model E .

1. When Alg starts a phase by transmitting an `max packet then,
(a) If OFF has `min packets pending, then the adversary extends the phase so that

OFF can transmit successfully as many `min packets as possible, up to γ̂. Then,
it ends the phase so that Alg does not complete the transmission of the `max
packet (since γ̂`min < `max).

(b) If OFF does not have any `min packets pending, then the adversary inserts a link
error immediately (say after infinitesimally small time ε).

2. When Alg starts a phase by transmitting an `min packet then,
(a) If OFF has a packet of length `max pending, then the adversary extends the phase

so OFF can transmit an `max packet. By the time this packet is successfully
transmitted, the adversary inserts an error and finishes the phase. Observe that
in this case Alg was able to successfully transmit up to γ packets `min.

(b) If OFF has no `max packets pending, then the adversary inserts an error imme-
diately and ends the phase.

Observe that in phases of type 1b and 2b, neither OFF nor Alg are able to transmit any
packet. These phases are just used by the adversary to wait for the conditions required
by phases of type 1a and 2a to hold. In those latter types some packets are successfully
transmitted (at least by OFF). Hence we call them productive phases. Analyzing a pos-
sible execution, in addition to the concept of phase that we have already used, we define
rounds. There is a round associated with each productive phase. The round ends when
its corresponding productive phase ends, and starts at the end of the prior round (or at
the start of the execution if no prior round exists). Depending on the type of productive
phase they contain, rounds can be classified as type 1a or 2a.

Let us fix some (large) time t. We denote by r(j)1a the number of rounds of type 1a
in which j ≤ γ̂ `min packets are sent by OFF completed by time t. The value r(j)2a

with j ≤ γ `min packets sent by Alg, is defined similarly for rounds of type 2a. (Here
rounding effects do not have any significant impact, since they will be compensated
by the assumption that t is large.) We assume that t is a time when a round finishes.
Let us denote by r the total number or rounds completed by time t, i.e.,

∑γ
j=1 r

(j)
2a +∑γ̂

j=1 r
(j)
1a = r. The relative throughput by time t can be computed as

TAlg(A,E, t) =
`min

∑γ
j=1 j · r

(j)
2a

`max
∑γ
j=1 r

(j)
2a + `min

∑γ̂
j=1 j · r

(j)
1a

. (2)

From this expression, we can show the following result.

Theorem 3. No algorithm Alg has relative throughput larger than γ
γ .

Proof. It can be observed in Eq. 2 that, for a fixed r, the lower the value of r(j)1a the
higher the relative throughput. Regarding the values r(j)2a , the throughput increases when
there are more rounds in the larger values of j. E.g., under the same conditions, a
configuration with r(j)2a = k1 and r(j+1)

2a = k2, has lower throughput than one with
r
(j)
2a = k1 − 1 and r(j+1)

2a = k2 + 1. Then, the throughput is maximized when r(γ)2a = r

and the rest of values r(j)1a and r(j)2a are 0, which yields the bound.

To provide tighter bounds for some special cases, we prove the following lemma.

Lemma 1. Consider any two constants η, η′ such that 0 < η < λ < η′. Then:
(a) there is a constant c > 0, dependent only on λ, p, η, such that for any time t ≥ `min,

the number of packets of length `min (resp., `max) injected by time t is at least tηp
(resp., tηq) with probability at least 1− e−ct;

(b) there is a constant c′ > 0, dependent only on λ, p, η′, such that for any time t ≥
`min, the number of packets of length `min (resp., `max) injected by time t is at
most tη′p (resp., tη′q) with probability at least 1− e−c′t.

Now we can show the following result.

Theorem 4. Let p < q. Then, the relative throughput of any algorithm Alg is at most
min

{
max

{
λp`min,

γ
γ+γ

}
, γγ

}
.

Proof. The claim has two cases. In the first case, λp`min ≥ γ
γ . In this case, the upper

bound of γ
γ is provided by Theorem 3. In the second case λp`min < γ

γ . For this case,
define two constants η, η′ such that 0 < η < λ < η′ and η′p < ηq. Observe that these
constants always exist. Then, we prove that the relative throughput of any algorithm
Alg in this case is at most max

{
η′p`min,

γ
γ+γ

}
.

Let us introduce some notation. We use amin
t and amax

t to denote the number of
`min and `max packets, respectively, injected up to time t. Let roff

t and soff
t be the

number of `max and `min packets respectively, successfully transmitted by OFF by
time t. Similarly, let salg

t be the number of `min packets transmitted by algorithm Alg

by time t. Observe that salg
t ≥ roff

t ≥ b s
alg
t

γ c.
Let us consider a given execution and the time instants at which the queue of OFF

is empty of `min packets in the execution. We consider two cases.
Case 1: For each time t, there is a time t′ > t at which OFF has the queue empty of
`min packets. Let us fix a value δ > 0 and define time instants t0, t1, . . . as follows. t0
is the first time instant no smaller than `min at which OFF has no `min packet and such
that amin

t0 > `max. Then, for i > 0, ti is the first time instant not smaller than ti−1+δ at
which OFF has no `min packets. The relative throughput at time ti can be bounded as

TAlg(A,E, ti) ≤
salg
ti `min

roff
ti `max + amin

ti `min
≤

salg
ti `min

b s
alg
ti

γ c`max + amin
ti `min

.

This bound grows with salg
ti when amin

ti > `max, which leads to a bound on the relative
throughput as follows:

TAlg(A,E, ti) ≤
amin
ti `min

amin
ti (`max

γ + `min)− `max
=

amin
ti γ

amin
ti (γ + γ)− γγ

.

Which as i goes to infinity yields a bound of γ
γ+γ .

Case 2: There is a time t∗ after which OFF never has the queue empty of `min packets.
Recall that for any t ≥ `min, from Lemma 1, we have that the number of `min packets
injected by time t satisfy amin

t > η′pt with probability at most exp(−c′t) and the
injected max packets satisfy amax

t < ηqt with probability at most exp(−ct). By the
assumption of the theorem and the definition of η and η′, η′p < ηq. Let us define
t∗ = 1/(ηq − η′p). Then, for all t ≥ t∗ it holds that amax

t ≥ amin
t + 1, with probability

at least 1 − exp(−c′t) − exp(−ct). If this holds, it implies that OFF will always have
`max packets in the queue.

Let us fix a value δ > 0 and define t0 = max(t∗, t
∗), and the sequence of instants

ti = t0 + iδ, for i = 0, 1, 2, By the definition of t0, at all times t > t0 OFF is
successfully transmitting packets. Using Lemma 1, we can also claim that in the interval
(t0, ti] the probability that more than η′piδ packets `min are injected is no more than
exp(−c′′iδ).

With the above, the relative throughput at any time ti for i ≥ 0 can be bounded as

TAlg(A,E, ti) ≤
(amin
t0 + η′p · iδ)`min

roff
t0 `max + soff

t0 `min + iδ

with probability at least 1− exp(−cti)− exp(−c′ti)− exp(−c′′ti). Observe that as i
goes to infinity the above bound converges to η′p`min, while the probability converges
exponentially fast to 1.

4.2 Lower Bound and Algorithm CSL-Preamble
In this section we consider algorithm CSL-Preamble (stands for Conditional
SL-Preamble), which builds on algorithm SL-Preamble presented in Section 3.2, in
order to solve packet scheduling in the setting of stochastic packet arrivals. The algo-
rithm, depending on the arrival distribution, either follows the SL policy (giving priority
to `min packets) or algorithm SL-Preamble. More precisely, algorithm CSL-Preamble
acts as follows:

If λp`min > γ
2γ then algorithm SL is run,

otherwise algorithm SL-Preamble is executed.

Theorem 5. The relative throughput of algorithm CSL-Preamble is not smaller than
γ

γ+γ for λp`min ≤ γ
2γ , and not smaller than min

{
λp`min,

γ
γ

}
otherwise.

Proof. (Sketch) We break the analysis of the algorithm into cases according to the prob-
ability of `min packet arrivals and consider the time line of executions ignoring any
OPT-unproductive periods.
Case λp`min ≤ γ

2γ . In this case algorithm CSL-Preamble runs algorithm SL-Preamble,
achieving, per Theorem 2, relative throughput of at least γ

γ+γ under any error pattern.

Case γ
2γ ≤ λp`min ≤ 1. It can be proved that the relative throughput is not smaller than

min
{
ηp`min,

γ
γ

}
, for any η satisfying λ/2 < η < λ. To prove it, we consider time

points ti being multiples of `max and show that with high probability, at those points
there have already arrived at least tiηp packets. Using this property, we show that the
relative throughput at time tj is at least min

{
ηp`min − γ`min

tj
, (1− 1/

√
j) · γγ

}
with

probability at least 1 − c′ exp (−ct√j), for some constant c, c′ > 0 dependent only on
λ, η, p. It follows that if j grows to infinity, we obtain the desired relative throughput.
Case λp`min > 1. In this case we simply observe that we get at least the same rel-
ative throughput as in case λp`min = 1, because we are dealing with executions
saturated with packets of length `min with probability converging to 1 exponentially
fast. (Recall that we use the same algorithm SL in the specification of CSL-Preamble,
both for λp`min = 1 and for λp`min > 1.) Consequently, the relative throughput in
this case is at least min {ηp`min, γ/γ}, for any λ/2 < η < λ, and thus it is at least
min {λp`min, γ/γ} ≥ min {1, γ/γ} = γ/γ.
Combining the three cases, we get the claimed result.

Observe that if we compare the upper bounds on relative throughput shown in the
previous subsection with the lower bounds of the above theorem, then we may conclude
that in the case where γ is an integer, algorithm CSL-Preamble is optimal (wrt relative
throughput). In the case where γ is not an integer, there is a small gap between the upper
and lower bound results.

5 Conclusions
This work has considered packet scheduling with dynamic packet arrivals and adversar-
ial bit errors. We studied scenarios with two different packet lengths, developed efficient
algorithms, and proved upper and lower bounds for relative throughput in average-case
(i.e., stochastic) and worst-case (i.e., adversarial) online packet arrivals. These results

demonstrate that exploring instantaneous feedback mechanisms (and developing more
effective implementations of it) has the potential to significantly increase the perfor-
mance of communication systems.

Several future research directions emanate from this work. Some of them concern
the exploration of variants of the model considered, for example, assuming that pack-
ets that suffer errors are not retransmitted (which applies when Forward Error Correc-
tion [11] is used), considering packets of more than two lengths, or assuming bounded
buffers. Other lines of work deal with adding QoS requirements to the problem, such
as requiring fairness in the transmission of the packets from different flows or imposing
deadlines to the packets. In the considered adversarial setting, it is easy to see that even
an omniscient offline solution cannot achieve stability: for example, the adversary could
prevent any packet from being transmitted correctly. Therefore, an interesting extension
of our work is to study conditions (e.g., restrictions on the adversary) under which an
online algorithm could maintain stability, and still be efficient with respect to relative
throughput. Finally, we believe that the definition of relative throughput as proposed
here can be adapted, possibly in a different context, to other metrics and problems.

References
1. Miklos Ajtai, James Aspnes, Cynthia Dwork, and Orli Waarts. A theory of competitive

analysis for distributed algorithms. In Foundations of Computer Science, 1994 Proceedings.,
35th Annual Symposium on, pages 401–411. IEEE, 1994.

2. Matthew Andrews and Lisa Zhang. Scheduling over a time-varying user-dependent channel
with applications to high-speed wireless data. J. ACM, 52(5):809–834, September 2005.

3. Antonio Fernandez Anta, Chryssis Georgiou, Dariusz R. Kowalski, Joerg Widmer, and Elli
Zavou. Measuring the impact of adversarial errors on packet scheduling strategies. In ArXiv,
2013.

4. Baruch Awerbuch, Shay Kutten, and David Peleg. Competitive distributed job scheduling.
In Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pages
571–580. ACM, 1992.

5. Kyle Jamieson and Hari Balakrishnan. Ppr: partial packet recovery for wireless networks. In
Proceedings of the 2007 conference on Applications, technologies, architectures, and proto-
cols for computer communications, SIGCOMM ’07, pages 409–420, New York, NY, USA,
2007. ACM.

6. Thomas Kesselheim. Dynamic packet scheduling in wireless networks. In PODC, pages
281–290, 2012.

7. Shu Lin and Daniel J Costello. Error control coding, volume 123. Prentice-hall Englewood
Cliffs, NJ, 2004.

8. Chad Meiners and Eric Torng. Mixed criteria packet scheduling. Algorithmic Aspects in
Information and Management, pages 120–133, 2007.

9. Michael L Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.
10. Kirk Pruhs, Eric Torng, et al. Online scheduling. 2007.
11. Anand Raghavan, Kannan Ramchandran, and Igor Kozintsev. Continuous error detection

(ced) for reliable communication. IEEE Transactions on Communications, 49(9):1540–
1549, 2001.

12. Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Competitive throughput
in multi-hop wireless networks despite adaptive jamming. Distributed Computing, pages
1–13, 2012.

13. Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

