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Abstract—The multiple-access relay channel with two sources,
a single relay, and one destination is considered. Under the
assumption of noisy source–relay links causing the relay to be
unable to decode without error, we propose a framework for
designing one- and two-dimensional quantizers for quantizing
the soft information at the relay. These quantizers are mutual-
information preserving. Simulation results show a) that mutual-
information preserving quantization schemes outperform tech-
niques in which the soft information is forwarded in an analog
fashion to the destination, b) that two-dimensional quantization
outperforms one-dimensional quantization for source–relay links
of different quality, and c) that diversity order of two can be
gained in block Rayleigh fading channels by having the relay
adaptively select a two-dimensional quantizer from a fixed set of
quantizers shared with the destination, depending on the channel
state on the source–relay links.

Index Terms—Quantization, cooperative systems, relays, iter-
ative methods

I. INTRODUCTION

D IVERSITY techniques have been widely studied as an

effective means to combat multipath fading effects in-

herent in wireless communication channels. Multiple transmit

and/or receive antennas can often provide a form of spatial

diversity whenever the application of much simpler time or

frequency diversity techniques is precluded due to delay or

bandwidth constraints. However, due to size limitations on the

mobile devices of, e.g., a cellular communication network, the

placement of multiple antennas at such mobile terminals is not

always a feasible option. Cooperative diversity, first proposed

in [1], [2], introduces spatial diversity without interfering with

the size limitations of the terminals by allowing nodes to

cooperate in facilitating their transmissions. In some cases,

cooperation is achieved by employing a relay node whose

sole purpose is to facilitate the transmissions of other nodes.

Besides the gain in reliability, relays are also envisioned to

provide coverage extension for cell-edge users of cellular
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networks [3] at reasonable cost. However, under orthogonal

transmission – an assumption often made in practice –, the

extra resources allocated to the relay result in a loss of spectral

efficiency, a loss which can be reduced by allowing several

users to share one relay for joint processing. We therefore fo-

cus on the orthogonal multiple-access relay channel (MARC)

[4] in the following, where two sources transmit independent

information to a common destination via a single relay.

In related work, diversity achieving schemes are proposed

for distributed antenna systems [5], and for the MARC using

low-density parity-check codes [6] and distributed turbo codes

[7], combined with network coding [8] by performing joint

network channel coding at the relay. Since the relay performs

some form of (joint) re-encoding of the source messages in

such a decode-and-forward scheme [9], [10], it is common to

that work that the relay node is required to decode the source

messages perfectly. However, even if the relay fails at recov-

ering the source messages fully, the information available at

the relay can still be beneficial for decoding at the destination

if forwarded properly. As such, amplify-and-forward [10] or

soft-decode-and-forward schemes [11] avoid error propagation

effects occurring if residual bit errors remain at the relay after

a hard decision about the information sequence.

In more recent work [12], the authors combine soft decoding

and analog forwarding of beliefs from the relay with network

coding in the MARC, in that they form and transmit the

beliefs about the network coded code bits of both users at the

relay, thereby achieving notable gains in symmetric additive

white Gaussian noise (AWGN) channels. However, the block

of beliefs about the network coded code bits is sent to the

destination in an analog manner; furthermore, forming the

beliefs about the network coded code bits turns out to be

suboptimal especially in situations where the source–relay

channels are of different quality.

The contributions of this paper are two-fold. Firstly, building

on the system description in [12], we propose a framework

for designing mutual-information preserving one-dimensional

quantizers for the soft information at the relay that take into

account the rate constraint on the relay–destination link by

formulating the optimization problem as a tradeoff between

quantization rate and obtained mutual information. Quanti-

zation of log-likelihood ratios was also considered in [13]

under the assumption of them being conditionally Gaussian

distributed. Secondly, noting that forming the beliefs about

the network coded bits is particularly disadvantageous if the

soft information of the two users at the relay has different

reliability, the proposed framework is extended to the design

of two-dimensional quantizers operating directly on the soft



2

Source 1

Source 2

Relay Destination

γd,1

γr,1

γd,2

γr,2

γd,r

Fig. 1. The multiple-access relay channel. The relay only knows γr,1 and γr,2.

information of both users, without going through the inter-

mediate step of computing the likelihoods of the network

coded message. In doing so, the available rate on the relay–

destination link is appropriately divided among the two users,

according to the quality of the soft information that is at hand

for each user at the relay. Finally, by employing quantization at

the relay, digital transmission with its well-known advantages

can be leveraged on the relay–destination link.

The paper is structured as follows. The system model is

introduced in Section II, based on which we design mutual-

information preserving quantizers in Section III. Numerical

results for various channel models are shown in Section IV, be-

fore we end with concluding remarks in Section V. Through-

out, vectors are written in bold font, while scalars appear

in normal font. Random variables are printed in upper case

letters, and their realizations appear in lower case characters.

The entropy of a random variable X is H(X), mutual infor-

mation between two random variables X and Y is written as

I(X;Y ), and expectation is denoted by E[·]. The term 1{·} is

the indicator function.

II. SYSTEM MODEL

A. Sources

At each source i ∈ {1, 2}, a block of independent infor-

mation bits Ui ∈ {0, 1}ki is encoded with a channel code of

rate ki/ni to a block of code bits Xi ∈ {0, 1}ni , which is

then modulated to the channel symbols Si ∈ M
mi

i , where Mi

is the modulation alphabet of size Mi at the i-th source. In

the rest of the paper, we assume that the number of code bits

satisfies n = n1 = n2.

B. Channel Model

The channel model is shown in Fig. 1. In our model, the

transmissions from the sources and the relay are assumed to

be orthogonalized either in frequency or in time. Despite the

suboptimality of this constraint, the restriction to orthogonal

channels eases practical implementation. Note that the restric-

tion to orthogonal channels also includes a half-duplex con-

straint often imposed on the relay for implementation reasons,

so that the relay cannot transmit and receive simultaneously

in the same frequency band. Without loss of generality, we

assume the orthogonality to be guaranteed by time division;

consequently, a first slot is assigned to source 1, a second slot

to source 2, and a third slot to the relay. Let Sr ∈ M
mr
r be

the transmitted vector from the modulation alphabet Mr at the

relay. For a path-loss coefficient p and distances dr,i, dd,i, and

dd,r between the terminals, the received signals at the relay

and at the destination read

Y
(t)
i =

ht,i
√

dt,i
pSi +N

(t)
i t ∈ {r, d}, i ∈ {1, 2} (1)

Y (d)
r =

hd,r
√

dd,r
pSr +N (d)

r , (2)

where hr,i, hd,i, and hd,r are the complex channel fading

coefficients satisfying E[|hr,i|
2] = E[|hd,i|

2] = E[|hd,r|
2] = 1,

and the additive noise variables are independent circularly

symmetric complex Gaussian random variables with zero

mean and variance normalized to unity. The average values

of the signal-to-noise ratio (SNR) are given as ρr,i = Pi/d
p
r,i,

ρd,i = Pi/d
p
d,i, and ρd,r = Pr/d

p
d,r, where Pi and Pr are

the powers of the sources and the relay. Throughout, we

make the common assumption that the receivers know the

instantaneous SNR values γr,i = |hr,i|
2ρr,i, γd,i = |hd,i|

2ρd,i,
and γd,r = |hd,r|2ρd,r of their channels, and that the trans-

mitters only possess knowledge about the average SNR. In

particular, the relay is assumed to lack both average and

instantaneous channel state information (CSI) of the source–

destination channels due to their fading nature and limited

signaling from the destination to the relay.

C. Relay Operations

The operations at the relay considered in this work are

restricted to methods generating and transforming soft infor-

mation about the coded bits of each user for transmission to

the destination.

1) Generation of soft information: Upon reception of y
(r)
1

and y
(r)
2 , the relay’s first option is to invoke soft demappers

to compute log-likelihood ratios (LLRs) ℓi = ℓ
(dem)
i ∈ R

n,

i = 1, 2, about the coded bits, where, for m = 1, 2, . . . , n,

ℓ
(dem)
i,m = ln

p
(

xi,m = 0|y
(r)
i,j

)

p
(

xi,m = 1|y
(r)
i,j

) , j = ⌈m/ log2(Mi)⌉. (3)

Alternatively, the relay performs soft decoding to calculate

ℓi = ℓ
(dec)
i ∈ R

n, i = 1, 2, where

ℓ
(dec)
i,m = ln

p
(

xi,m = 0|y
(r)
i

)

p
(

xi,m = 1|y
(r)
i

) , m = 1, 2, . . . , n. (4)

2) Processing of soft information: The first strategy for

processing the soft information (ℓ1, ℓ2) is the one of [12],

where the relay computes soft information about the network

coded code bits based on (ℓ1, ℓ2). Specifically, the relay first

interleaves ℓ2 to avoid short cycles in the factor graph asso-

ciated with the iterative decoder introduced in Section II-D,

yielding the block ℓ′2 ∈ R
n carrying soft information about

x′
2 (the interleaved version of x2). Then, the relay forms the

soft information ℓ ∈ R
n about x = x1 ⊕ x′

2, where [14]

ℓm = ℓ1,m ⊞ ℓ′2,m , ln

(

1 + eℓ1,m+ℓ′2,m

eℓ1,m + eℓ
′

2,m

)

≈ sign(ℓ1,m)sign(ℓ′2,m)min
{
|ℓ1,m|, |ℓ′2,m|

}
. (5)
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The second strategy combines the computation of soft in-

formation about the network coded code bits from [12]

with scalar deterministic quantization of ℓ. More formally,

the relay employs a quantizer with quantization rule q(ℓ),
q : R → Z , yielding the compressed version z ∈ Zn,

where Z = {1, 2, . . . , N} refers to the quantizer index set.

Since the quantizer is invariant for the entire block, the m-th

component zm of z is given by zm = q(ℓm), m = 1, 2, . . . , n.

Transforming the quantization rule into a probability mass

function p(z|ℓ) = 1{q(ℓ)=z}, we have the mass function p(z|x)
associated with the quantization given as

p(z|x) =

∫

p(z|ℓ)f(ℓ|x)dℓ, (6)

where f(ℓ|x) is the density of the soft information ℓ condi-

tioned on x, which is assumed to be known or obtained from

measurement (cf. Section III).

By investigating (5), we note that the reliability of the

soft information ℓ is dominated by min
{
|ℓ1,m|, |ℓ′2,m|

}
, so

that |ℓm| is limited by the weaker user at the relay. Such a

scenario occurs, e.g., if the source–relay links have different

SNR. Therefore, in the third proposed strategy for processing

soft information at the relay, the XOR computation is omit-

ted. Instead, the relay performs deterministic two-dimensional

quantization of ℓ1 and ℓ′2, which is described by the quantiza-

tion rule q(ℓ1, ℓ2), q : R2 → Z , where again, Z is the index set

of the quantizer. As before, the quantizer is assumed invariant

for the entire block, so that the m-th element of z ∈ Zn

is given by zm = q(ℓ1,m, ℓ′2,m), m = 1, 2, . . . , n. Defining

p(z|ℓ1, ℓ2) = 1{q(ℓ1,ℓ2)=z} and writing f(ℓ1, ℓ2|x1, x2) for the

density of (ℓ1, ℓ2) conditioned on (x1, x2), the mass function

p(z|x1, x2) is obtained as

p(z|x1, x2) =

∫∫

p(z|ℓ1, ℓ2)f(ℓ1, ℓ2|x1, x2)dℓ1dℓ2, (7)

where the density f(ℓ1, ℓ2|x1, x2) is known or approximated

by measurement.

3) Transmission from the relay: Utilizing a quantizer at the

relay does not necessarily result in equiprobable quantization

indices {1, 2, . . . , N} of the quantizer index set Z . Hence, the

sequence z needs to be source encoded, yielding the block

of bits ur ∈ {0, 1}kr , which is then channel encoded using a

channel code of rate Rr = kr/nr to the code bits xr ∈ {0, 1}nr

before modulation to the symbols sr ∈ M
mr
r .

D. Destination

The destination uses the iterative receiver [12] shown in

Fig. 2. It contains two soft-in/soft-out (SISO) decoders using

the received words y
(d)
1 and y

(d)
2 from the direct links.

Furthermore, since the code bits of the two users are coupled

by the joint processing at the relay, these two SISO decoders

are connected by relay check nodes using y
(d)
r from the relay,

drawn as gray squares in Fig. 2. The relay check nodes

allow exchange of soft information between the component

SISO decoders, so that the overall decoder resembles a turbo

decoder, in contrast to which, however, code bits of two

independent sources are coupled.

Decoder

Decoder
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SISO
y

(d)
1

y(d)
r

y(d)
r

y
(d)
2

π

π−1

ℓ
(E)
1ℓ

(E)
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ℓ
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Fig. 2. Iterative decoder.
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Fig. 3. Relay check node for analog, soft bit, and quantized transmission from
the relay.

The operations of the relay check nodes of course depend

on how the soft information at the relay is processed and

transmitted. Fig. 3 shows a summary, where the black square

is a standard check node whose function in the factor graph

is the indicator function 1{xm=x1,m⊕x′

2,m}, so that we have

ℓ
(A)′
2 = ℓ

(E)
1 ⊞ ℓ(dr) and ℓ

(A)
1 = ℓ

(E)′
2 ⊞ ℓ(dr). In case of scalar

quantization at the relay, the destination first needs to recover

an estimate ẑ of the quantizer output at the relay depending

on the success of decoding ur. At this point, we presume the

existence of a cyclic redundancy check (CRC) in ur, which

we assume to be perfect in the sequel. Then, in order to avoid

catastrophic error propagation through the source decoder in

case of residual errors in ûr, the entire transmission from the

relay is discarded in that case, so that there is no exchange of

soft information between the component decoders. Otherwise,

we can assume the source decoder output ẑ to correspond

to the quantization indices obtained at the relay node, i.e.,

ẑ = z. For one-dimensional quantization of ℓ at the relay, the

sequence z specifies the probability distribution p(xm|zm),
m = 1, 2, . . . , n, from which we obtain

ℓ(dr)m = ln

(
p(xm = 0|zm)

p(xm = 1|zm)

)

, m = 1, 2, . . . , n, (8)

which are the input to a check node with indicator function

1{xm=x1,m⊕x′

2,m}.

For two-dimensional quantization of ℓ1 and ℓ′2 at the relay,

the situation is different in that the soft information about

x is not formed at the relay. Nevertheless, the quantization

at the relay specifies the distribution p(zm|x1,m, x′
2,m), m =

1, 2, . . . , n, which is available given perfect reconstruction of z

at the destination. Consequently, the coupling of the two com-

ponent decoders in the factor graph of the iterative decoder at

the destination occurs through the function nodes specified by
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Fig. 4. One section of the factor graph at the destination with messages
µA(x1,m) and µE(x

′

2,m), where j = ⌈m/ log2(Mi)⌉.

p(zm|x1,m, x′
2,m), a section of which is shown in Fig. 4. For

convenience, we describe the operations of that function node

in terms of likelihood ratios. To that end, define for ξ ∈ {0, 1}

ℓ(x1,m, x′
2,m = ξ|zm) , ln

(

p(zm|x1,m =0, x′
2,m = ξ)

p(zm|x1,m =1, x′
2,m = ξ)

)

(9)

ℓ(x1,m = ξ, x′
2,m|zm) , ln

(

p(zm|x1,m = ξ, x′
2,m =0)

p(zm|x1,m = ξ, x′
2,m =1)

)

(10)

ℓ(x1,m, x′
2,m|zm) , ln

(

p(zm|x1,m =0, x′
2,m =1)

p(zm|x1,m =1, x′
2,m =0)

)

. (11)

Then, for m = 1, 2, . . . , n, ℓ
(A)
1,m and ℓ

(A)′
2,m are given by

ℓ
(A)
1,m=ln

(

1 + eℓ
(E)′
2,meℓ(x1,m=0,x′

2,m|zm)

eℓ
(E)′
2,me−ℓ(x1,m,x′

2,m|zm)+e−ℓ(x1,m,x′

2,m=1|zm)

)

(12)

ℓ
(A)′
2,m=ln

(

1 + eℓ
(E)
1,meℓ(x1,m,x′

2,m=0|zm)

eℓ
(E)
1,meℓ(x1,m,x′

2,m|zm)+e−ℓ(x1,m=1,x′

2,m|zm)

)

. (13)

Appendix A gives a proof of (12) and (13).

E. Reference Schemes

In addition to point-to-point links without the use of the

relay, we also consider analog transmission of ℓ [12] from the

relay and transmission as soft bit [15] as reference schemes.

For the sake of completeness, Fig. 3 includes the correspond-

ing operations at the destination.

III. QUANTIZER DESIGN

In this section, we study the design of mutual-information

preserving quantizers for application at the relay to allow

maximal exchange of soft information between the component

decoders at the destination. Throughout, we restrict the design

framework to the case where the quantizer output can be

perfectly recovered at the destination.

A. One-dimensional Quantizers

The most common distortion measure for the design of

quantizers and for rate-distortion problems involving real-

valued random variables is the squared-error distortion for

its simplicity and convenience in analysis, and despite its

lack of perceptual meaningfulness for some problems [16].

In general, finding the right distortion measure for a particular

problem can be a difficult and controversial task [16, Chapter

2.4]. Given that fact, it seems to be equally hard to choose a

distortion function for the problem we consider here, namely

quantizing the soft information at the relay node. Therefore,

we follow the approach taken by Tishby et al. in [17], where

they deal with the rate distortion problem in a different way

using the notion of relevance through another variable. Instead

of putting the constraint on the average distortion for some

distortion measure chosen a-priori, the constraint is that the

quantization q(L) should contain some minimum level of

information about a third variable, the relevant variable, which,

in our case, is the random variable X = X1 ⊕ X2. Given

a random variable L representing the soft information at the

relay, the goal is to find a quantized version q(L) that contains

as much relevant information as possible, which is information

about X . That is, instead of forcing, e.g., the squared error

between L and q(L) to be small, the goal is to preserve as

much information as possible in q(L) about X .

We now formalize these ideas. In order to design a quan-

tization function q with N quantization regions, we aim at

solving the optimization problem

I∗ = sup
q:R→Z

I(X; q(L)) s.t. |Z| = N. (14)

In order to allow computation of a good mutual-information

preserving quantizer in the following, we make a number of

simplifying assumptions. First, finely quantize the range of

the continuous random variable L with density f(ℓ), yielding

a random variable L̄ with finite range and mass function p(ℓ),
so that L̄ is from a finite set L. The optimization problem at

hand now is

q̄∗ = argmax
q̄:L→Z

I(X; q̄(L̄)) s.t. |Z| = N. (15)

The second step comprises a transformation of the mapping

q̄, similar to before, into a conditional mass function p(z|ℓ) =
1{q̄(ℓ)=z} allowing us to rewrite (15) as

p∗(z|ℓ) = argmax
p(z|ℓ)∈P1

I(X;Z), (16)

where the constraint set

P1 =
{
p(z|ℓ) : p(z|ℓ) ∈ {0, 1} ∀ z ∈ Z, ℓ ∈ L,

∑

z

p(z|ℓ) = 1 ∀ ℓ ∈ L, |Z| = N
}

(17)

ensures that the mapping p(z|ℓ) is a valid conditional mass

function, and that it represents a scalar deterministic quantizer

with N quantization regions.

Before proceeding, consider the related problem

max
p(z|ℓ)∈P′

1

I(X;Z), (18)

with

P ′
1 =
{
p(z|ℓ) : p(z|ℓ)≥0∀z∈Z, ℓ∈L,

∑

z

p(z|ℓ)=1 ∀ℓ∈L
}
.

The set P ′
1 is a polyhedron, and therefore convex [18]; also,

P ′
1 is bounded and closed, and therefore compact [18, Section

2.2]. Further, I(X;Z) is convex in the distribution p(z|ℓ),
for fixed p(x) and p(ℓ|x) [19]. Consequently, Problem (18)

is a convex maximization over a compact polyhedral set,
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whose maximum is therefore attained at an extreme point

of P ′
1 [18, Theorem 3.4.7]. However, to solve (18) with

global optimality, one still needs to search all extreme points

of P ′
1, which is prohibitively complex since there are N |L|

of those. Since all the extreme points of P ′
1 correspond to

a distribution p(z|ℓ) ∈ {0, 1}, this also shows that scalar

deterministic quantization (as considered in (16)) is optimal,

i.e., the mutual information I(X;Z) cannot be improved by

allowing randomized quantization, so that (18) and (16) have

the same maximizer.

In the following, we are restricting ourselves to finding a

locally optimal solution to (16).

Proposition 1: Solving Problem (16) is equivalent to solv-

ing

p∗(z|ℓ) = argmin
p(z|ℓ)∈P1

E
[
D
(
p(x|L̄)||p(x|Z)

)]
. (19)

Proof: By the chain rule for mutual information [19], we

have

I(X; L̄, Z) = I(X;Z)+I(X; L̄|Z) = I(X; L̄)+I(X;Z|L̄).

Since X ↔ L̄ ↔ Z form a Markov chain, we have p(x|ℓ, z) =
p(x|ℓ) and I(X;Z|L̄) = 0, so that one obtains

I(X;Z)=I(X; L̄) + I(X;Z|L̄)
︸ ︷︷ ︸

=0

−I(X; L̄|Z) (20)

=I(X; L̄)−
∑

x,ℓ,z

p(x, ℓ, z) log2

(
p(x, ℓ|z)

p(x|z)p(ℓ|z)

)

(21)

=I(X; L̄)−
∑

ℓ,z

p(ℓ, z)
∑

x

p(x|ℓ) log2

(
p(x|ℓ)

p(x|z)

)

(22)

=I(X; L̄)−
∑

ℓ,z

p(ℓ, z)D
(
p(x|ℓ)||p(x|z)

)
(23)

=I(X; L̄)− E
[
D
(
p(x|L̄)||p(x|Z)

)]
. (24)

For I(X; L̄) is fixed for a given p(x, ℓ), the maximization in

(16) is equivalent to minimizing the expected relative entropy

E[D(p(x|L̄)||p(x|Z))].
Hence, the relative entropy between p(x|ℓ) and p(x|z) can

be seen as the distortion measure1

d(ℓ, z) =D(p(x|ℓ)||p(x|z)) =
∑

x

p(x|ℓ) log2

(
p(x|ℓ)

p(x|z)

)

(25)

for the problem at hand. Note that relative entropy emerged as

the right distortion measure for the quantizer design problem

by posing it as an optimization of relevant information.

In Problem (19), the probability distribution p(x, ℓ) is fixed

and known, and has to be obtained numerically. Hence,

p(z|ℓ) is the only free variable. This is due to the fact that

p(x, ℓ) is fixed, and p(z) =
∑

ℓ p(ℓ)p(z|ℓ) and p(x|z) =
(1/p(z))

∑

ℓ p(x, ℓ)p(z|ℓ) are fully determined by p(z|ℓ). Al-

though the optimal distribution p(z|ℓ) cannot be obtained in

closed form, we propose an iterative optimization algorithm

that can be shown to converge to a Karush-Kuhn-Tucker

(KKT) point [18, Section 4.3] of (18). We summarize the

1Strictly speaking, the relative entropy D(p||q) is not a distortion measure,
since it does not satisfy the triangle inequality and is not symmetric, i.e.,
D(p||q) 6= D(q||p) in general.

1: Input: p(x, ℓ), N = |Z|, ǫ > 0
2: Initialization: randomly choose a valid mapping

p(z|ℓ) ∈ {0, 1}, D(old) ← I(X; L̄)
3: p(z)←

∑
ℓ
p(ℓ)p(z|ℓ)

4: p(x|z)← (1/p(z))
∑

ℓ
p(x, ℓ)p(z|ℓ)

5: d(ℓ, z)← D(p(x|ℓ)||p(x|z))
6: D(new) ← E[d(L̄, Z)] (Compute average distortion)

7: while D(old) −D(new) ≥ ǫ do
8: D(old) ← D(new)

9: find, for each ℓ, z∗ℓ = argminz d(ℓ, z), (New mapping)
and set p(z|ℓ)← 1z=z∗

ℓ

10: p(z)←
∑

ℓ
p(ℓ)p(z|ℓ) (Update of probabilities)

11: p(x|z)← (1/p(z))
∑

ℓ
p(x, ℓ)p(z|ℓ)

12: d(ℓ, z)← D(p(x|ℓ)||p(x|z)) (Update distortion function)

13: D(new) ← E[d(L̄, Z)] (Update average distortion)
14: end while

Fig. 5. Algorithm to compute p(z|ℓ).

algorithm in Fig. 5. Convergence of the algorithm follows

since the update of the mapping p(z|ℓ) in line 9 of the

algorithm is chosen such that the average distortion of the

new mapping is no worse than that of the previous mapping,

and from the concavity of I(X; L̄|Z) with respect to p(z|ℓ). In

essence, this algorithm is reminiscent of the Lloyd algorithm

[20], where however, in our algorithm, the distortion function

d(ℓ, z) is given by the relative entropy (25), and therefore

depends on the mapping p(z|ℓ). This is reflected in the update

of line 12 of the algorithm. The algorithm in Fig. 5 is

also related to the iterative information bottleneck algorithm

[17], where our algorithm can be recovered by choosing the

Lagrange parameter β of [17] to be β ≫ 0 to ensure that the

mapping p(z|ℓ) ∈ {0, 1} corresponds to a deterministic quan-

tizer. The iterative algorithm of [17] in turn is reminiscent of

the celebrated Blahut–Arimoto algorithm [21] for computing

channel capacities and rate distortion functions, with the main

difference that the algorithm for computing the mapping in the

information bottleneck setting updates the distribution p(x|z)
as well to incorporate the dependency of the distortion d(ℓ, z)
on the mapping p(z|ℓ) to be optimized. Relative entropy as

a distortion measure for vector quantizer design was also

employed in [22]; however, the algorithm in [22] is explicitly

formulated for quantizing LLRs, whereas the algorithm in

Fig. 5 can be used to design a quantizer for maximum mutual

information irrespective of whether L̄ is an LLR or not, as long

as the joint probability mass function p(x, ℓ) or an estimate

thereof is available. Further, from the algorithm in Fig. 5,

the connection to the information bottleneck principle [17] is

evident, which is a general framework for the tradeoff between

rate and relevant mutual information.

Remark 1: Since the resulting mapping p(z|ℓ) ∈ {0, 1} rep-

resents a scalar quantizer, the mutual information I(L̄;Z) =
H(Z), which is also the rate of the resulting quantizer. Fixing

N , the rate of the quantizer is therefore upper bounded

by log2(N). Since Problem (16) is a convex maximization

problem, the algorithm in Fig. 5 is only guaranteed to find a so-

lution satisfying the necessary conditions for local optimality.

In our attempt to find a good mutual-information preserving

quantizer, the algorithm is therefore repeatedly carried out

with random starting conditions until a satisfactory solution
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is obtained.

B. Two-dimensional Quantizers

As for one-dimensional quantization of ℓ, the framework

for designing a two-dimensional quantizer for ℓ1 and ℓ′2 will

be established using mutual information as a figure of merit,

but with a different expression as relevant information, whose

choice will be motivated by the following two arguments.

1) Inspection of the iterative decoding process at the des-

tination: During that process, cf. Fig. 2, the component

decoders produce random variables L
(E)
1 and L

(E)
2 with mutual

information I(X1;L
(E)
1 ) and I(X2;L

(E)
2 ), which is the input

information to the corresponding relay check node. At this

point, again assuming error-free transmission of the quantizer

output Z, we note that the relay check node in the receiver

processes Z and L
(E)
i to produce a-priori information for

the corresponding component decoder. Therefore, we would

like the quantizer at the relay to be such that I(Xi;Z,L
(E)
j ),

i, j ∈ {1, 2}, i 6= j, is maximal, both for the information

exchange from decoder 1 to decoder 2, and vice versa. Since

I(Xi;Z,L
(E)
j ) = I(Xi;L

(E)
j ) + I(Xi;Z|L

(E)
j ) (26)

= I(Xi;Z|L
(E)
j ), (27)

where it is assumed that I(Xi;L
(E)
j ), i 6= j, vanishes, we are

left with maximizing I(Xi;Z|L
(E)
j ), which is, however, hard

to maximize due to its dependence on the variable L
(E)
j that

changes its statistics with increasing number of iterations. We

therefore propose the following. Observing that the extrinsic

information L
(E)
j from component decoder j being perfectly

reliable corresponds to Xj being given, we optimize the

mutual information I(Xi;Z|Xj) instead of I(Xi;Z|L
(E)
j ),

thereby removing the dependency on the changing statis-

tics of L
(E)
j . Consequently, to allow maximal information

transfer from decoder 1 to decoder 2, I(X2;Z|X1) should

be maximized, and analogously, for decoder 1 to receive

maximal information from decoder 2, I(X1;Z|X2) should be

as large as possible. Various combinations of these information

expressions can be taken to form the relevant information

term. We propose to take the average of I(X1;Z|X2) and

I(X2;Z|X1) as the relevant information term, i.e., Irel ,

I(X1;Z|X2) + I(X2;Z|X1).
2) Connection with one-dimensional quantization of soft

information about XORed code bits: In addition to the mo-

tivation above, we also establish a connection between the

proposed cost function Irel for two-dimensional quantization

with the cost function employed for the design of one-

dimensional quantizers in the following proposition.

Proposition 2: Let L be the soft information about X =
X1 ⊕X2 of two independent and equally likely bits X1 and

X2, and let q1 be the quantization function of a quantizer

processing L, so that Z = q1(L). Further, assume that

f(ℓi|xi) satisfies the symmetry condition f(ℓi|0) = f(−ℓi|1).
Then, I(X; q1(L)) = I(X1, X2; q1(L)) and I(X1; q1(L)) =
I(X2; q1(L)) = 0.

The proof is relegated to Appendix B. From Proposi-

tion 2 we see that maximizing I(X; q1(L)) corresponds to

maximizing I(X1, X2; q1(L)), subject to I(X1; q1(L)) =
I(X2; q1(L)) = 0. For two-dimensional quantization using a

quantization function q2 : R×R → Z , we relax the condition

I(X1; q2(L1, L2)) = I(X2; q2(L1, L2)) = 0, but seek to

choose the quantization function q2 such that q2(L1, L2) car-

ries as much information about the pair (X1, X2) as possible,

while carrying little information about X1 and X2 alone. This

is reflected in the choice of

Irel = I(X1; q2(L1, L2)|X2) + I(X2; q2(L1, L2)|X1) (28)

= 2I(X1, X2; q2(L1, L2))− I(X1; q2(L1, L2)) (29)

−I(X2; q2(L1, L2)).

To compute a two-dimensional mutual information preserving

quantizer, we finely quantize the ranges of the continuous

random variables L1 and L2 with densities f(ℓ1) and f(ℓ2)
to obtain discrete variables L̄1 ∈ L1 and L̄2 ∈ L2 with

probability mass functions p(ℓ1) and p(ℓ2), where both L1 and

L2 are finite sets. Writing the mapping q̄ : L1 × L2 → Z as

p(z|ℓ1, ℓ2) = 1{q̄(ℓ1,ℓ2)=z}, we pose the optimization problem

we wish to solve as

p∗(z|ℓ1, ℓ2) = argmax
p(z|ℓ1,ℓ2)∈P2

Irel, (30)

where

P2 =

{

p(z|ℓ1, ℓ2) : p(z|ℓ1, ℓ2)∈{0,1}, ∀(z, ℓ1, ℓ2)∈Z×L1×L2

∑

z∈Z

p(z|ℓ1, ℓ2) = 1, ∀(ℓ1, ℓ2) ∈ L1 × L2, |Z| = N

}

.

Proposition 3: Solving Problem (30) is equivalent to solv-

ing

argmin
p(z|ℓ1,ℓ2)∈P2

{

E
[
2D
(
p(x1, x2|L̄1, L̄2)||p(x1, x2|Z)

)]
(31)

− E
[
D
(
p(x1|L̄1)||p(x1|Z)

)]
− E

[
D
(
p(x2|L̄2)||p(x2|Z)

)]}

.

Proof: Similar to the proof of Proposition 1 we use that

(X1, X2) ↔ (L̄1, L̄2) ↔ Z forms a Markov chain, and

that the term I(X1, X2; L̄1, L̄2) is fixed, so that maximiz-

ing Irel is equivalent to minimizing 2I(X1, X2; L̄1, L̄2|Z) −
I(X1; L̄1|Z)− I(X2; L̄2|Z), which can be expressed in terms

of relative entropies as in (31).

Remark 2: To compute an approximate solution to (31),

we can use an appropriately modified version of the iterative

algorithm in Fig. 5. The algorithm for the two-dimensional

quantizer design is given in Fig. 6. Similarly to Section III-A,

the mass functions p(x1, ℓ1) and p(x2, ℓ2) are obtained numer-

ically, and we run the algorithm in Fig. 6 with different starting

conditions to ensure that a good two-dimensional quantizer

is found. For a deterministic quantizer with quantization rule

q(ℓ1, ℓ2) we then have I(L̄1, L̄2;Z) = H(Z) as the rate of

the resulting quantizer.

C. Examples of Quantizers

In this section, we present some examples for quantizers

obtained with the algorithms in Figs. 5 and 6. In all cases, the
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TABLE I
COMPARISON OF QUANTIZER CHARACTERISTICS.

Quantizer Type γr |Z| Decision Border(s) ln
(

p(x = 0|z)
/

p(x = 1|z)
)

I(X; L̄) I(X;Z) H(Z)

Mutual information 0 dB 2 [0] [-5.61, 5.61] 0.985 0.964 1

Mutual information -2 dB 3 [-1.45, 1.45] [-3.55, 0, 3.55] 0.762 0.714 1.425

Lloyd–Max -2 dB 3 [-3.25, 3.25] [-4.91, 0, 4.91] 0.762 0.634 1.585

Uniform -2 dB 3 [-4.75, 4.75] [-6.05, 0, 6.05] 0.762 0.484 1.495

Mutual information -3 dB 5 [-2.30, -0.71, 0.71, 2.30] [-3.35, -1.30, 0, 1.30, 3.35] 0.505 0.485 2.286

1: Input: p(x1, x2, ℓ1, ℓ2), N = |Z|, ǫ > 0
2: Initialization:randomly choose a valid mapping

p(z|ℓ1, ℓ2) ∈ {0, 1}, D
(old) ← I(X1, X2; L̄1, L̄2)

3: p(z)←
∑

ℓ1,ℓ2
p(ℓ1, ℓ2)p(z|ℓ1, ℓ2)

4: p(x1, x2|z)← (1/p(z))
∑

ℓ1,ℓ2
p(x1, x2, ℓ1, ℓ2)p(z|ℓ1, ℓ2)

5: d(ℓ1, ℓ2, z)← 2D(p(x1, x2|ℓ1, ℓ2)||p(x1, x2|z))
−D(p(x1|ℓ1)||p(x1|z))−D(p(x2|ℓ2)||p(x2|z))

6: D(new) ← E[d(L̄1, L̄2, Z)] (Compute average distortion)

7: while D(old) −D(new) ≥ ǫ do
8: D(old) ← D(new)

9: find z∗ℓ1,ℓ2 = argminz d(ℓ1, ℓ2, z), (New mapping)
and set p(z|ℓ1, ℓ2)← 1z=z∗

ℓ1,ℓ2

10: p(z)←
∑

ℓ1,ℓ2
p(ℓ1, ℓ2)p(z|ℓ1, ℓ2) (Update of probabilities)

11: p(x1, x2|z)← (1/p(z))
∑

ℓ1,ℓ2
p(x1, x2, ℓ1, ℓ2)p(z|ℓ1, ℓ2)

12: d(ℓ1, ℓ2, z)← 2D(p(x1, x2|ℓ1, ℓ2)||p(x1, x2|z))
−D(p(x1|ℓ1)||p(x1|z))−D(p(x2|ℓ2)||p(x2|z))

(Update distortion function)

13: D(new) ← E[d(L̄1, L̄2, Z)] (Update average distortion)
14: end while

Fig. 6. Algorithm to compute p(z|ℓ1, ℓ2).

underlying channel codes are recursive convolutional codes

with generator

G(D) =

(

1,
1 +D4

1 +D +D2 +D3 +D4

)

(32)

and information blocklength k = k1 = k2 = 1996. BPSK

modulation is employed at the sources.

The first set of examples involves some illustration on how

the designed quantizers look like for different values of the

source–relay SNR γr,i and alphabet sizes |Z|, in case of one-

dimensional quantizers for ℓ and BCJR [23] soft decoders at

the relay. Here, we assume symmetric source–relay channels,

i.e., γr = γr,1 = γr,2. Numerical characteristics of the

designed quantizers are summarized in Table I. As the source–

relay SNR decreases, the number of quantization regions

required to achieve a mutual information I(X;Z) close to

the limit I(X; L̄) increases, leading to an increase in rate

on the relay–destination link. To highlight the effectiveness

of the proposed quantizer design framework using mutual

information as a figure of merit compared to other well-

known quantization methods, we also exemplarily show the

parameters of the Lloyd–Max [20] and uniform quantizer in

Table I for γr = −2 dB and |Z| = 3. Evidently, both the

Lloyd–Max and the uniform quantizer require a higher rate

than the quantizer designed with the proposed algorithm, while

preserving less relevant mutual information.

In the second set of examples, the relay performs soft

demapping only. Fig. 7 depicts the partitioning of the (ℓ1, ℓ2)-
plane into quantization regions as obtained by the iterative

optimization algorithm. Each of the resulting regions is gray-

level coded, with each gray level corresponding to one symbol

of the quantizer alphabet Z . Using |Z| = 3 regions, the

quantizer is shown in Fig. 7(a) for symmetric source–relay

links at γr,1 = γr,2 = 4 dB. Note that this partition effectively

mimics one-dimensional quantization of the soft information

ℓ about the XOR-coded bits. In contrast, if channel conditions

on the source–relay links are profoundly different, then the

relay should preferably allocate more of the rate available on

the relay–destination channel to the stronger user, and this

is exactly achieved with the two-dimensional formulation of

the quantization problem at the relay, as shown in Fig. 7(b)

for again |Z| = 3 regions, where γr,1 = −8 dB and

γr,2 = −1 dB. Note that in this rather extreme case, all the

quantization rate is allocated to the second user, whose soft

information at the relay is vastly more reliable than the one of

the first user. Finally, Fig. 7(c) displays a typical quantization

mapping obtained for γr,1 = −4 dB, γr,2 = 1 dB, and |Z| = 5
regions.

IV. SIMULATION RESULTS

A. Additive White Gaussian Noise Channels

We first show bit error rate (BER) results for AWGN

channels, i.e., hr,i = hd,i = hd,r = 1, and symmetric links,

for which γd = γd,1 = γd,2 as well as γr = γr,1 = γr,2. Both

sources employ BPSK modulation. In the reference system

without the aid of the relay, a recursive convolutional code

with generator [24, Chapter 9.1]

G(D) =

(

1,
1+D+D3+D4

1+D2+D4
,
1+D+D2+D3+D4

1+D2+D4

)

(33)

is used at the sources with k = k1 = k2 = 996 and n = 3000,

yielding 6000 total uses of the channel. In the system with the

relay, the sources use the recursive convolutional code with

generator given in (32), again with k = k1 = k2 = 996
information bits and n = 2000, so that a fair comparison with

the reference system is guaranteed. Throughout, γr = 4 dB,

and the relay employs soft demodulation to obtain the soft

information. The scalar quantizer used at the relay is one with

N = 3 quantization regions, for which H(Z) = 1.257 <
log2(3). Source coding at the relay is therefore beneficial to

exploit the additional redundancy in Z, and is performed with

an arithmetic code [25]. We also employ the corresponding

two-dimensional quantizer (shown in Fig. 7(a)) for compar-

ison. Taking γd,r = 3.5 dB ensures reliable transmission of

z with a turbo code of appropriate rate as specified in the

Universal Mobile Telecommunication System (UMTS) [26]

standard, and 8-phase shift keying (8-PSK) modulation at the
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ℓ
1

ℓ2

− 10 − 5 0 5 10

− 6

− 4

− 2

0

2

4

6

(b) γr,1 =−8 dB, γr,2 =−1 dB, |Z|=3.
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(c) γr,1 =−4 dB, γr,2 =1 dB, |Z|=5.

Fig. 7. Quantizers obtained for two-dimensional quantization of ℓ1 and ℓ′2 at the relay. The quantizer in (c) is also suitable for γr,1 = −1 dB, γr,2 = 4 dB,
and QPSK modulation with soft demapping.
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Fig. 8. BERs for symmetric source–relay channels, γr = 4 dB, |Z| = 3.

relay. Note that γd,r = 3.5 dB is kept constant for analog and

soft bit transmission as well. The corresponding BER curves

are shown in Fig. 8, from which we observe that the schemes

with the relay considerably outperform the reference point-

to-point link; furthermore, quantized transmission provides a

gain of roughly 1 dB over analog transmission in the waterfall

region of the BER curve. In this symmetric scenario, the gain

of two-dimensional quantization over scalar quantization is

marginal; however, the picture changes for asymmetric source–

relay links.

Fig. 9 shows results for asymmetric source–relay channel

conditions. Again, k = k1 = k2 = 996, and the sources

employ the recursive convolutional code with generator in (32)

and QPSK modulation, yielding m1 = m2 = 1000. We

assume that γr,1 = γd + 3 dB and γr,2 = γd + 8 dB, and

that γd,r = 18 dB. The relay performs soft demapping of its

received signals followed by quantization with N = 5 regions

and an arithmetic encoder for source coding. Although some

of the quantizers used in this scheme have H(Z) very close to

the limit of log2(5) and hence, the redundancy in Z is small,

source coding is used here to obtain a binary representation of

z. On the relay–destination link, we use the UMTS turbo code

B
E

R

Source-destination SNR γd = γd,1 = γd,2 in dB
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Fig. 9. BERs for asymmetric source–relay channels, γr,1 = γd+3 dB, γr,2 =
γd + 8 dB, |Z| = 5.

of appropriate rate and 256-Quadrature Amplitude Modulation

(QAM) with mr = 1000. Note that for γd = −4 dB, the

quantizer used at the relay is given in Fig. 7(c). In the point-to-

point link, the sources have k = k1 = k2 = 996 information

bits, and use the convolutional code with generator in (33) with

QPSK modulation, so that m1 = m2 = 1500. As expected,

two-dimensional quantization considerably outperforms one-

dimensional quantization of the soft information about the

XOR-coded bits where the source–relay links have different

SNR. The gains compared to the point-to-point link are most

pronounced for small source–destination SNR, with user 2 as

the stronger user at the relay doing clearly better than user 1.

B. Block Fading Channels

We now turn our attention to the performance of the

proposed schemes in Rayleigh block fading channels, where

we assume that the fading variables hr,i, hd,i, and hd,r

are mutually independent and each distributed according to

CN (0, 1). Throughout, we assume a symmetric network, i.e.,

dr = dr,1 = dr,2 and dd = dd,1 = dd,2. Further, the relay
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is placed closer to the destination than to the sources. In

particular, we set p = 3.52 and consider two cases:

• Case 1: the relay is placed between the sources and the

destination, with dr = (9/10)dd. Consequently, ρr = ρd+
1.61 dB, so that the source–relay SNR is only a little

larger than the source–destination SNR.

• Case 2: the relay is placed behind the destination, with

dr = (3/2)dd, so that ρr = ρd − 6.20 dB. The relaying

scheme turns out to be useful even in this case in

which the source–relay SNR is smaller than the source–

destination SNR. This is in contrast to decode-and-

forward schemes, in which the requirement that the relay

can decode reliably requires a fairly high SNR on the

source–relay links [7].

Due to the proximity of the destination and the relay, we take

ρr,d = ρd + 15 dB.

If the relay is present, the sources have k = k1 = k2 =
2000 information bits to transmit, but now use the UMTS

turbo code [26] of rate 1/2 and BPSK modulation, so that

m1 = m2 = 4000. The relay and the destination share

a set Q of two-dimensional quantizers designed with the

framework introduced in Section III-B. Given the realizations

of the received sequences (y
(r)
1 ,y

(r)
2 ) and of γr,1 and γr,2,

the relay selects the proper quantizer in Q, computes the

sequence z, source encodes that sequence with an arithmetic

encoder, and channel encodes using the UMTS turbo code

of appropriate rate, yielding the sequence sr ∈ M
mr
r with

mr = 4000, where the modulation alphabet Mr at the relay is

chosen to be 16-QAM. In this example, the entropy coding

step is useful both to exploit the additional redundancy in

the quantized sequence (depending on the actual choice of

the quantizer), and to perform the mapping to a binary string

efficiently. We compare two sets of quantizers. The first set Q1

contains one quantizer with |Z| = 5 quantization regions for

every pair of instantaneous SNR values γr,1 and γr,2 in the set

S1 = {−9 dB,−8 dB,−7 dB, . . . , 7 dB}. For this choice of S1,

there are |Q1| = |S1|2 = 289 quantizers available at the relay.

Consequently, signaling the relay’s quantizer choice to the

destination requires at most 9 bits; we assume this signaling

to be perfect in the sequel. The other set Q2 of quantizers

consists of one quantizer with |Z| = 5 regions for every pair

of γr,1 and γr,2 in the set S2 = {−9 dB, 0 dB, 6 dB}, so that

|Q2| = 9, resulting in 4 bits to signal the quantizer choice.

In the reference point-to-point system, the sources employ

the UMTS turbo code [26] of rate 1/3 and k = k1 = k2 =
2000 with BPSK modulation, yielding m1 = m2 = 6000.

Our second reference system includes the relay, so that k =
k1 = k2 = 2000 and m1 = m2 = mr = 4000; here, the

relay does perform one-dimensional quantization of ℓ, the soft

information about x = x1 ⊕ x′
2. In particular, SXOR = S1, so

that the quantizer set shared by the relay and the destination

contains |QXOR| = 289 quantizers with |Z| = 5 quantization

regions each. The third reference system under consideration

includes the relay as well, so that k = k1 = k2 = 2000 and

m1 = m2 = mr = 4000. However, instead of two-dimensional

quantization, the relay performs one-dimensional quantization

of the soft information ℓj of the user j with the stronger

Average source–destination SNR ρd in dB
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Fig. 10. Frame error rates for the MARC and the point-to-point link.

source–relay channel, while excluding the weaker user in the

cooperation. For the stronger user j, there is one quantizer

with |Z| = 5 for each instantaneous SNR value γr,j in S1.

Including the bit required to signal the index of the stronger

user at the relay, at most 6 signaling bits are needed. Note

that the destination performs maximum-ratio combining for

that user included in the cooperation.

The simulation results in Fig. 10 show the common frame

error rate (CFER) of the reference systems and the system

with the relay, for both network geometries. Based on these

curves we observe that the schemes involving the relay achieve

second order diversity for both case 1 and case 2, since the

CFER decays proportional to ρ−2
d . However, if the relay pro-

cesses (ℓ1, ℓ
′
2) directly without going through the intermediate

step of computing the likelihood ratios of the XOR of the

coded vectors, considerably better performance is obtained,

which is due to the fact that the reliability of the XOR at the

relay is undesirably dominated by the weaker source–relay

channel – a disadvantage avoided by joint quantization of the

soft information at the relay. Particularly, the system with the

proposed two-dimensional quantizers at the relay gains more

than 10 dB compared to the point-to-point link at relevant

CFERs of 10−3. More importantly, simple one-dimensional

quantization of the stronger user at the relay is not sufficient

to achieve second order diversity. It is also important to note

that the scheme involving joint quantization at the relay does

not require the set of available quantizers at the relay to be

prohibitively large. In fact, we observe that the system with 9

quantizers shared at the relay performs only marginally poorer

than the one with a set of 289 quantizers, at considerable lower

signaling overhead.

V. CONCLUSIONS

In this paper, we studied the MARC with two users and

noisy source–relay links preventing successful decoding at

the relay, so that the operations at the relay are limited to

schemes generating and processing soft information. One-

and two-dimensional deterministic quantizers were designed

for the soft information at the relay based on the notion of
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ℓ
(A)
1,m = ln

(

p(zm|x1,m = 0, x′
2,m = 0)µE(x

′
2,m = 0) + p(zm|x1,m = 0, x′

2,m = 1)µE(x
′
2,m = 1)

p(zm|x1,m = 1, x′
2,m = 0)µE(x′

2,m = 0) + p(zm|x1,m = 1, x′
2,m = 1)µE(x′

2,m = 1)

)

(34)

= ln





1 +
p(zm|x1,m=0,x′

2,m=0)

p(zm|x1,m=0,x′

2,m=1)

µE(x
′

2,m=0)

µE(x′

2,m=1)

p(zm|x1,m=1,x′

2,m=0)

p(zm|x1,m=0,x′

2,m=1)

µE(x′

2,m=0)

µE(x′

2,m=1) +
p(zm|x1,m=1,x′

2,m=1)

p(zm|x1,m=0,x′

2,m=1)



 . (35)

relevant information, leading to an improvement over analog

transmission methods from the relay. Simulation results further

suggest that two-dimensional quantization at the relay outper-

forms schemes based on network coding the soft values in case

of unequal channel quality on the source–relay channels. To

perform the quantization, the relay does not require CSI about

the source–destination links, a fact especially advantageous

in wireless fading channels where this information may not

always be available at the relay. In a Rayleigh block fading

environment, the relay chooses a suitable quantizer from a

fixed set based on the SNR on the incoming links, and

forwards its compressed estimate of the received sequences

to destination. We observe from numerical results that full

diversity order of two can be gained with this scheme. The

scheme incurs small delay, since no (soft) decoding is required

at the relay node to achieve these gains. Further, we remark

that the only overhead created through cooperation is due

to the signaling of the quantizer choice at the relay to the

destination, since the choice of the quantizer depends on the

source–relay SNRs, which are assumed to be unknown at

the destination. An efficient low-complexity implementation

of two-dimensional quantization might be to approximate the

boundaries of the two-dimensional quantizers by hyperplanes,

so that the quantization can be found by comparing the vector

of likelihoods (ℓ1,m, ℓ′2,m) to be quantized with a number of

hyperplanes.
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APPENDIX A

To derive the message passing rules given in (12) and (13),

consider Fig. 4. The message passing rules for function

nodes are applied in the following to compute ℓ
(A)
1,m =

ln((µA(x1,m = 0))/(µA(x1,m = 1))). Since µA(x1,m) =
∑

x2∈{0,1} p(zm|x1,m, x2)µE(x2), one obtains (35) at the top

of this page, which with the definitions in (9)-(11) yields (12).

Along the same lines, one can also verify (13).

APPENDIX B

The proof of Proposition 2 consists of two parts. First,

observe that

I(X1, X2; q1(L)) = H(q1(L))−H(q1(L)|X1, X2, X) (36)

≥ H(q1(L))−H(q1(L)|X) (37)

= I(X; q1(L)). (38)

where (36) holds since X = X1 ⊕ X2 is a deterministic

function of X1 and X2, and (37) holds since conditioning does

not increase entropy. Next, we show that (X1, X2) ↔ X ↔ L
form a Markov chain, i.e., that L is independent of (X1, X2)
given X . To that end, define

g(λ1, λ2) , ln

(
1 + eλ1+λ2

eλ1 + eλ2

)

, λ1 ∈ R, λ2 ∈ R, (39)

and observe that g(−λ1,−λ2) = g(λ1, λ2). Using the in-

dependence of X1 and X2 and the symmetry assumption

on f(ℓi|xi), and substituting λ′
i = −λi, we obtain for the

conditional cumulative distribution function (CDF) of L that

FL|X1,X2
(ℓ|0, 0)

= Pr {L ≤ ℓ|X1 = 0, X2 = 0} (40)

=

∫∫

(λ1,λ2):g(λ1,λ2)≤ℓ

fL1,L2|X1,X2
(λ1, λ2|0, 0)dλ1dλ2 (41)

=

∫∫

(λ1,λ2):g(λ1,λ2)≤ℓ

fL1,L2|X1,X2
(−λ1,−λ2|1, 1)dλ1dλ2 (42)

=

∫∫

(λ′

1,λ
′

2):g(λ
′

1,λ
′

2)≤ℓ

fL1,L2|X1,X2
(λ′

1, λ
′
2|1, 1)dλ

′
1dλ

′
2 (43)

= FL|X1,X2
(ℓ|1, 1). (44)

Along the same lines, one can show that FL|X1,X2
(ℓ|0, 1) =

FL|X1,X2
(ℓ|1, 0), so that L is independent of (X1, X2) given

X = X1 ⊕ X2. Since (X1, X2) ↔ X ↔ L form a Markov

chain, also (X1, X2) ↔ X ↔ L ↔ q1(L) form a Markov

chain; consequently, I(X; q1(L)) ≥ I(X1, X2; q1(L)) by the

data processing inequality, which together with (38) gives

I(X; q1(L)) = I(X1, X2; q1(L)). For the second part of the

proof, we write for i ∈ {1, 2}

I(Xi; q1(L)) ≤ H(Xi)−H(Xi|X, q1(L)) (45)

= H(Xi)−H(Xi|X) = 0, (46)

which, together with the nonnegativity of mutual information,

gives I(Xi; q1(L)) = 0.
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