

TR-IMDEA-Networks-2013-2

Implementations details of the
IEEE 802.11aa Group Addressed

Transmission Service

Pablo Salvador

Luca Cominardi

Francesco Gringoli

Pablo Serrano

August 2013

Implementations details of the IEEE 802.11aa

Group Addressed Transmission Service

Pablo Salvador∗†, Luca Cominardi‡, Francesco Gringoli‡, Pablo Serrano†

∗Institute IMDEA Networks, Madrid, Spain

Email: josepablo.salvador@imdea.org
†University Carlos III of Madrid, Spain

Email: pablo@it.uc3m.es
‡University of Brescia, Italy

Email: luca.cominardi@gmail.com,francesco.gringoli@ing.unibs.it

Abstract—In this report we explain and describe the implemen-
tation of the 802.11aa protocol and every aspect that concerns the
choices selected and their motivations. We detail all the required
modifications at the driver and firmware levels. We also motivate
the choice of the implementation platform.

I. INTRODUCTION

We implement the 802.11aa GATS protocol by means of

the open-source firmware OpenFWWF and the Linux driver

b43. The reason is that we we need to perform some timely

operations only feasible at the firmware level. It is not possible

to implement some of required modifications at higher layers

due to the latency that they introduce, as in some cases

we require to forge frames in less than a SIFS interval

time. All the commons 802.11 wireless devices perform the

acknowledgment procedure at firmware level or directly at

hardware level. The only platform where these mechanisms

can be changed is Broadcom with OpenFWWF firmware.

Other platforms, such as FPGA1 have been considered as

they offer a high degree of flexibility. However, their high

costs make them inappropriate in order to develop scenarios

with large number of receivers.

II. LINUX AND THE WLAN NETWORKS

Linux offers a well developed stack for 802.11 for wireless

devices. There is a high number of developers and users

involved in the creation and maintenance of drivers, and their

integration in the Linux kernel. Recently, companies have

increased their interest in the Open Source philosophy, e.g.,

Intel and Atheros have started to release open source drivers

for Linux. Still, manufacturers do not disclosure some piece

of the software, this is generally the firmware which is the

piece of code that communicates directly with the hardware.

Linux implements a dedicated wireless stack which includes

firmware, driver and 802.11 mac layer. Initially, the 802.11

MAC protocol was managed by the module ieee80211, which

has been progressively replaced by the recent mac80211

module. This module does not handle retransmissions, ACKs,

and other functions that involve very short execution times,

these functionality are delegated to the underlying hardware.

1FPGA: Field-programmable gate array, which is an integrated circuit
designed to be configured by a customer or a designer after manufacturing

TABLE I
802.11 LINUX STACK

Layer 3 and above Stack TCP/IP

Layer 2

Wrapper 802.3 - 802.11
mac80211
Driver

Firmware

Layer 1 Hardware

Before getting to the 802.11 MAC layer packets are for-

matted as Ethernet frames: the mac80211 module takes the

frame and converts it into a one compliant with the IEEE

802.11 standard. There are appropriate interfaces that allow to

connect user space to the mac80211module, in this way it’s

possible configure the device from user space. Currently the

interface that allow to modify the way in which an interface

works (ad-hoc, managed, etc..) and other parameters such as

channel or rate is nl80211.

The interface based on nl80211 was designed to replace the

old wireless-extension, and leans on the cfg80211module. This

interface is still in active development. The nl80211 is essential

to the realization of the AP mode: module mac80211 does

not incorporate the functionality of the management frame

for that mode, and for a correct use of the device as access

point is necessary to use a program called hostapd. Such

application relies on the nl80211 interface, and handles all

operations typical of an AP: so far the only way to operate

a device in master mode is to use hostapd. Currently the

Linux developers are working in order to make nl80211 the

default interface, the program iwconfig will be replaced by

iw which, together with hostapd, provide powerful tools and

comprehensive management of wireless devices.

III. SOFTWARE OVERVIEW

In this section will be explained and described the driver

modifications necessary to implement the new 802.11aa pro-

tocol. The driver to modify is the open-source driver b43 for

Broadcom wireless chipset [1], we can find the source code

of this driver into the Linux kernel tree.

A. OpenFWWF

OpenFWWF, Open FirmWare for WiFi networks, is an

open-source firmware which implements the 802.11 DCF

mechanism on top of Broadcom wireless cards. Different

operations performed by wireless devices are controlled by

a microprocessor which generally runs a proprietary mi-

crocode/firmware written in assembly language. OpenFWWF

[2] replaces the proprietary firmware with an open source

one for Broadcom devices. The firmware supports all 802.11

primitives in the 2.4GHz band. By modifying the firmware

one can customize the NIC to adhere to a specific MAC given

the basic restrictions, e.g. carrier sensing and CCK and OFDM

modulations.

The internal units of the MAC processor allow the exchange

of data via two main routes: the path to the transmit (TX)

and one for receive (RX). To cope with different tasks, the

firmware is built as a main loop that responds to external

conditions, such as the arrival of a new frame, an indication

of free channel and the expiration of the internal timer2. The

key elements include:

• The FIFO queues for the TX and RX: the MAC

processor takes the frame from one of the Tx queues

and puts them into the serializer when can make a

transmission. In the other direction, the MAC processor

takes the frames received from the buffer of Rx queue

and raises an IRQ in such a way that the host kernel can

properly retrieve the frame;

• The internal shared memory (SHM): in this memory

the MAC processor maintains several state variables that

can be read or modified by the host kernel;

• The template RAM: the MAC processor can compose

an arbitrary frame in this region of memory and then

transmit the result as if it was coming from the FIFO

queue of TX;

• The internal registers and external conditions (EC):

the MAC processor changes these hardware registers in

response to changes in the EC, to program the radio

interface and set the timer correctly.

The current versions of the Linux kernel uses the mac80211

module for the development of device drivers. mac80211 is an

abstraction layer that allows you to interface the network stack

of the kernel with most of the low-level driver for wireless

devices. The rate control algorithm [3], [4], for example, is

generally implemented within mac80211 and shared by all the

drivers. These drivers also offer an interface with respect to

all the operations of low level defined by the 802.11 standard

that, as already said many times, are performed by firmware

or hardware due the timing’s problems.

When the b43 module is loaded the driver initializes the

device providing:

• ucode: Firmware image, namely the code that will be

executed by the CPU on the NIC.

• pcm: File that manages the encryption capabilities in

2http://bcm-v4.sipsolutions.net/802.11/Microcode

TABLE II
BITMAP OF THE QUEUES AT FIRMWARE LEVEL

bit QoS queue

0x0001 Background

0x0002 Best Effort

0x0004 Video

0x0008 Voice

0x0010 Multicast

hardware. Its presence is not indispensable at the time

that OpenFWWF not support such acceleration.

• initvals: File that initializes a set of registers with specific

values, e.g.: the slot time duration (SlotTime) or the SIFS.

There are different types of files depending on the revision

of the firmware on the device: in our case we use the

files: ucode5.fw, b0g0initvals5.fw and pcm5.fw3, which are

compatible with hardware revisions between 5 and 10.

We use the b43-tools [5] to assemble/disassemble and debug

the firmware:

• b43-asm: Assembler.

• b43-dasm: Disassembler.

• b43-fwdump: Debugger to dump of the content of

firmware’s register or the SHM.

B. Features overview

In this section we describe some firmware features, in

particular the hardware registers that we rely on to implement

802.11aa.

a) SPR TXE0 FIFO RDY: This special purpose register

checks if there is a frame ready in one of the queues. This

register behaves like a bitmap, i.e., each bit indicates the FIFO

queue that has a frame ready to transmit. Table II reports the

bitmap of these queues.

b) [SHM TXFCUR]: This register stores the number of

the current transmission.

c) SPR TXE0 SELECT: This special purpose register

selects one of the three available operations on a given queue

or on the raw template memory. The meaning of each bit is

explained in the following:

• bit 0x0003: Each combination of these two bits executes

a specific operation.

– 0: No operation.

– 1: Copy in SHM up to the end of the current

packet or the number of bytes written in

SPR TXE0 TX COUNT. Destination address is

stored into SPR TXE0 TX SHM ADDR. Source

address is either SPR TXE0 Template TX Pointer

when operating on raw template, or

SPR TXE0 FIFO HOL CURPTR when operating

on a FIFO queue.

– 2: Select for transmission during the scheduled

opportunity up to the end of the current packet or the

number of bytes written in SPR TXE0 TX COUNT.

Starts from SPR TXE0 Template TX Pointer

3This file is only required for Linksys routers WRT54GL

http://bcm-v4.sipsolutions.net/802.11/Microcode

when operating on raw template, or

SPR TXE0 FIFO HOL CURPTR when operating

on a FIFO queue.

– 3: Advance SPR TXE0 FIFO HOL CURPTR when

operating on a FIFO queue, the number of

bytes added to the pointer is the value in

SPR TXE0 TX COUNT.

• bit 0x0004:

– 0: Work up to the end of the packet in the FIFO

queue.

– 1: Work up to the number of bytes written in

SPR TXE0 TX COUNT.

• bit 0x0020: Set to 1 when asking transmission of a given

number of bytes as written in SPR TXE0 TX COUNT,

must be zero in all other cases and operations.

• bit 0x0700: The number of the FIFO queue on which the

operation must be performed.

• bit 0x0800: The possible values, with their meanings, are

the following:

– 0: Operate on a FIFO queue.

– 1: Operate on raw template.

d) SPR TXE0 FIFO CMD: This special purpose regis-

ter sets up the Transmission Engine (TE). This register must

be set to:

SPR TXE0 FIFO CMD = (queue# ≪ 8) | CMD

The values of CMD are the following:

• 0x2000: Move SPR TXE0 FIFO HOL and

SPR TXE0 FIFO HOL CURPTR to byte zero of

the next packet in the queue. This recycles the space left

available to load more packets from the corresponding

external queue, how many depends on the length of the

new packets, might also be zero.

• 0x4000: restores SPR TXE0 FIFO HOL CURPTR to

SPR TXE0 FIFO HOL to the begging of the HOL

packet in the queue.

e) spr0a5: Only the three less significant bits can be set.

Its value is 0x7 but nothing, apparently, changes with other

values.

f) COND STA MODE: This condition evaluates true in

managed, monitor and AP mode, false in ad-hoc.

g) COND AP MODE : This condition evaluates true in

AP mode.

h) Notes: When we transmit a packet from a FIFO

queue, the firmware first copies the packet into the Template

RAM and afterwards transmits it from it. Then, you can

still modify a packet when it is in the template before its

transmission. The transmission operation fetches bytes from

the FIFO image in the template and buffers them somewhere

in the Transmission Engine at a very high speed. Actual

transmission may start at the same time.

When working on given number of bytes from a FIFO

queue, transmission and copy can be requested beyond the

end of the current packet but within the next 32-bit boundary,

i.e., up to three bytes more can be transmitted if allowed by

the length of the packet.

When the PLCP is wrong with respect to the number of

bytes requested or in the queue, the transmission will start

but it will trigger PHY transmission errors visible executing

the command dmesg, which prints the message buffer of the

kernel. We can imagine that the Transmission Engine simply

expects a given number of bytes but it receives less than

expected and the transmission is interrupted. Sometimes we

noticed the rest of the packet being actually transmitted and

padded with zeros.

The images of the external FIFO in the template are rings.

This means that a packet can cross the FIFO end boundary. The

Transmission Engine will take care of this when transmitting.

IV. PLATFORM OVERVIEW

We implement GATS mechanisms on Alix 2d2 boxes by

PC Engines,4 which embed a Geode LX800 AMD 500 MHz

CPU, 256 MB DDR DRAM, 2 mini-PCI slots and a Compact

Flash (CF) socket. The CF card is equipped with a light

Ubuntu server distribution (10.04) and as kernel we use a

2.6.36 version5.

Each device embeds a Broadcom BCM94318MPG

802.11b/g wireless chipset, which supports the open-source

driver b43 [1] and the OpenFWWF firmware.

The files to modify at the driver level can be found in the

following path:

user@celeborn ˜/linux-2.6.36/drivers/net/wireless/

b43 \$

V. REQUIRED MODIFICATIONS

In this section we detail the modifications carried out at

the driver and firmware level in order to implement the new

802.11aa protocol.

A. Common driver modifications

A common modification in all the mechanisms is to mark

the groupcast packets. For that reason, we define a specific

UDP port for that kind of traffic, so when the driver and the

firmware receive a packet directed to this special port, they

enable the proper GATS mechanism. The choice of the port is

arbitrary but being aware not to collide with a reserved UDP

port, so we decide to use the port 48879. The use of UDP

is mandatory because as we transmit ”multicast” traffic and

the use of a connection oriented protocol, e.g. TCP, would be

more problematic.

To carry on with this modification we made a library

function that inspects the packet and returns a boolean value

based on whether the packet is UDP and the destination port

is set to 0xBEEF (48879). We modify the utility file, util.c.

...

bool ieee80211_fragment_is_80211aa(void* _buff, int len)

{

u8* buff = (u8*) _buff;

4http://www.pcengines.ch/
5http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.36.4.tar.gz

http://www.pcengines.ch/
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.36.4.tar.gz

if(len >= 60 && // we have enough bytes to

make the following checks

buff[24] == 0xAA && // normal LLC

buff[25] == 0xAA &&

buff[30] == 0x08 && // carrying IP

buff[31] == 0x00 &&

buff[32] == 0x45)

{

if(buff[41] == 0x11) // UDP

{

int dport = buff[54] << 8 | buff

[55];

if(dport == 0xBEEF)

return true;

}

}

return false;

}

EXPORT_SYMBOL(ieee80211_fragment_is_80211aa);

At the mac80211 layer we modify its header file:

user@celeborn ˜/linux-2.6.36/include/net/ \$

mac80211.h

The modification of this header is very simple and consists

only of adding the prototype of the function described above.

...

/* The prototype of the function */

bool ieee80211_fragment_is_80211aa(void* buff, int len);

#endif /* MAC80211_H */

Before starting to explain in detail the implementation for

each layer we present a high-level description for the driver

and firmware of every solution.

VI. DIRECTED MULTICAST SERVICE

The DMS system basically consists in splitting a multicast

flow into a various unicast flows. To do this we need to know

the MAC address of each associated client, if we have this

information becomes very simple to modify the driver.

A. Driver modifications

Fig. 1 reports the flowchart that represents the high-level

behavior of the driver for the DMS case, which can can be

summarized as follows:

1) Check if the incoming frame is an 802.11aa frame.

2) If it is an 802.11aa frame, replace the destination MAC

address with the MAC address of the selected station.

3) Transmit the frame to the DMA6

4) Check if we have sent the frame to all stations.

5) If it is not the last station, return to 2.

1) b43 header: We change the main header of the driver,

b43.h. In this file file we add some definition and variables

used for debugging purpose.

...

/* 80211aa define */

#define 80211aa_DEBUG 1

/* the offset of the destination mac address into skb->data

*/

#define DST_MAC_ADDR_OFF 4

6DMA: Direct Memory Access, it allows certain hardware subsystems
within the computer to access system memory independently of the central
processing unit (CPU).

Fig. 1. Flowchart of the driver implementation of the DMS mechanism.

/* the maximum number of associated clients */

#define NUM_STAS 100

/* the global index of last associated station */

extern int last_client_index;

/* the global list of the associated clients */

extern u8 assoc_client[NUM_STAS][ETH_ALEN];

...

...

/* Data structure for one wireless device (802.11 core) */

struct b43_wldev {

...

#ifdef 80211aa_DEBUG

/* these variable are used only for debugging

purpose */

unsigned int tx_frame_80211aa;

unsigned int rx_frame_80211aa;

#endif

};

...

2) Main: The core of DMS mechanism is the main file,

main.c, in which we add a variable to store the MAC address

of the associated stations.

...

/* the double array that contains the all mac address of

associated station */

u8 assoc_client[NUM_STAS][ETH_ALEN];

/* the index of last associated station, we keep the count

*/

int last_client_index = -1;

...

Then, we modify the function that sends the packet to the

DMA. We check if it is a 802.11aa packet, if so we send

the same frame a number of times equal to the number of

stations. Each time we send an 802.11aa frame we change the

destination MAC with that of the selected station.

...

static void b43_tx_work(struct work_struct *work)

{

...

struct sk_buff *skb;

struct sk_buff *skb_c;

...

while (skb_queue_len(&wl->tx_queue)) {

skb = skb_dequeue(&wl->tx_queue);

if(ieee80211_fragment_is_80211aa(skb->data,

skb->len)) {

/* send the same frame to every associated

station */

for(i = 0; i <= last_client_index; i++) {

if(i == last_client_index)

skb_c = skb;

else

skb_c = skb_copy(skb, GFP_ATOMIC);

skb_c->data[DST_MAC_ADDR_OFF+0] =

assoc_client[i][0];

skb_c->data[DST_MAC_ADDR_OFF+1] =

assoc_client[i][1];

skb_c->data[DST_MAC_ADDR_OFF+2] =

assoc_client[i][2];

skb_c->data[DST_MAC_ADDR_OFF+3] =

assoc_client[i][3];

skb_c->data[DST_MAC_ADDR_OFF+4] =

assoc_client[i][4];

skb_c->data[DST_MAC_ADDR_OFF+5] =

assoc_client[i][5];

if (b43_using_pio_transfers(dev))

err = b43_pio_tx(dev, skb_c);

else

err = b43_dma_tx(dev, skb_c);

#ifdef 80211aa_DEBUG

dev->tx_frame_80211aa++;

#endif

if (unlikely(err))

dev_kfree_skb(skb_c); /* Drop it */

}

}

else {

if (b43_using_pio_transfers(dev))

err = b43_pio_tx(dev, skb);

else

err = b43_dma_tx(dev, skb);

if (unlikely(err))

dev_kfree_skb(skb); /* Drop it */

}

}

...

}

...

3) Xmit: As we deal with a multicast flow turned into

multiple unicast flows we communicate to the firmware that

the 802.11aa frames require to be acknowledged. To this aim,

we modify in the xmit.c file the MAC control field into the

special header for the b43 devices.

...

int b43_generate_txhdr(struct b43_wldev *dev,

u8 *_txhdr,

struct sk_buff *skb_frag,

struct ieee80211_tx_info *info,

u16 cookie)

{

...

/* MAC control */

if (!(info->flags & IEEE80211_TX_CTL_NO_ACK))

mac_ctl |= B43_TXH_MAC_ACK;

/* Force ACK timeout for 80211aa frames */

if(ieee80211_fragment_is_80211aa((void*)

fragment_data, fragment_len))

mac_ctl |= B43_TXH_MAC_ACK;

...

}

...

4) Debugfs: In this DMS version the debug files system,

debugfs, is not only used for debugging purposes. As already

said, we have not implemented the part of announcing and

joining the groupcast group but to full implement the DMS

mechanism we have to know all the MAC address of asso-

ciated stations. We implemented it with a trick that permits

us to communicate directly to the driver the MAC address of

associated stations. We are conscious that this violates every

levels separation, in this way we put in communication the

application level directly to the driver level, but we want to

remember that this is the first reference implementation for

802.11aa standard.

The path of the file created for the special statistics is the

following:

/sys/kernel/debug/b43/phy*/spec_stat

The path of the file created to communicate the MAC

address of associated stations is the following:

/sys/kernel/debug/b43/phy*/associated_stas

We modify header file debugfs.h and add two line of code

with the structs that are our debugging files.

...

struct b43_dfs_file file_loctls;

/* Our debugfs with special statistics */

struct b43_dfs_file file_spec_stat;

/* Our debugfs with associated stations */

struct b43_dfs_file file_associated_stas;

struct b43_txstatus_log txstatlog;

...

The debugfs.c which implements all the debugging func-

tions communicates the MAC address of an associated station

to the driver and to the firmware. When something is written

in the file associated stas this function is called. The purpose

of this function is to receive a string as input, parse the string

and save the into the global variable assoc client. The format

the MAC address to pass in input is the following:

00:11:22:33:44:55

We pay attention that we do not check the validity of the

input passed. This can be a security hole but we do not care

about it because this is only a testing implementation.

...

static int associated_stas_write_file(struct b43_wldev *dev

, const char *buf, size_t bufsize)

{

int i;

/* now we do not check if the address is well formatted

,

* maybe in the future */

u8 addr[6];

sscanf(buf, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx",

&addr[0], &addr[1], &addr[2],

&addr[3], &addr[4], &addr[5]);

for(i = 0; i <= last_client_index; i++) {

if(addr[0] == assoc_client[i][0] &&

addr[1] == assoc_client[i][1] &&

addr[2] == assoc_client[i][2] &&

addr[3] == assoc_client[i][3] &&

addr[4] == assoc_client[i][4] &&

addr[5] == assoc_client[i][5]) {

break;

}

}

if(i <= last_client_index) {

printk("The client %02x:%02x:%02x:%02x:%02x:%02x is

already present\n",

addr[0], addr[1], addr[2], addr[3], addr

[4], addr[5]);

return -1;

}

if(last_client_index+1 >= NUM_STAS) {

printk("Reached the maximum number for the

associated client, can’t add %02x:%02x:%02x:%02

x:%02x:%02x\n",

addr[0], addr[1], addr[2], addr[3], addr[4],

addr[5]);

return -1;

}

last_client_index++;

for(i = 0; i < ETH_ALEN; i++)

assoc_client[last_client_index][i] = addr[i];

printk("New client associated:\t%02x:%02x:%02x:%02x:%02

x:%02x\n",

assoc_client[last_client_index][0],

assoc_client[last_client_index][1],

assoc_client[last_client_index][2],

assoc_client[last_client_index][3],

assoc_client[last_client_index][4],

assoc_client[last_client_index][5]);

return 0;

}

...

This function is called when the file associated stas is read.

This function is not necessary for a correct working of DMS

mechanism but is useful to check if the MAC addresses of

associated stations are stored correctly.

...

static ssize_t associated_stas_read_file(struct b43_wldev *
dev, char *buf, size_t bufsize)

{

ssize_t count = 0;

unsigned long flags;

int i;

spin_lock_irqsave(&dev->wl->hardirq_lock, flags);

for(i = 0; i <= last_client_index; i++) {

fappend("%02x:%02x:%02x:%02x:%02x:%02x\n",

assoc_client[i][0], assoc_client[i][1],

assoc_client[i][2],

assoc_client[i][3], assoc_client[i][4],

assoc_client[i][5]);

}

// Unlock the spin

spin_unlock_irqrestore(&dev->wl->hardirq_lock, flags);

return count;

}

...

When we read the file spec stat that we have created into

the debugfs, the kernel calls this function that takes care to

recover all current values from the device and to write them

into the debugfs file.

...

static ssize_t spec_stat_read_file(struct b43_wldev *dev,

char *buf, size_t bufsize)

{

ssize_t count = 0;

unsigned long flags;

unsigned int high, low, qos_queue;

// Lock the spin

spin_lock_irqsave(&dev->wl->hardirq_lock, flags);

// DRIVER LEVEL

fappend("DRIVER LEVEL:\n\n");

fappend("80211aa frames sent: %d\n", dev->

tx_frame_80211aa);

fappend("80211aa frames received: %d\n", dev->

rx_frame_80211aa);

spin_unlock_irqrestore(&dev->wl->hardirq_lock, flags);

return count;

}

...

The last step is to communicate to the kernel the right

function to use when we access the files in reading and writing.

We do this adding these few lines:

...

B43_DEBUGFS_FOPS(loctls, loctls_read_file, NULL);

/* Our debugfs with special statistics */

/* B43_DEBUGFS_FOPS(debugs_fs_file,

* function_called_on_reading,

* function_called_on_writing); */

B43_DEBUGFS_FOPS(spec_stat, spec_stat_read_file, NULL);

/* Our debugfs with associated stations */

B43_DEBUGFS_FOPS(associated_stas, associated_stas_read_file

, associated_stas_write_file);

...

...

ADD_FILE(loctls, 0400);

/* Our debugfs with special statistics */

/* ADD_FILE(debufs_fs_file, permissions_definition)

*/

ADD_FILE(spec_stat, 0600);

/* Our debugfs with associated stations */

ADD_FILE(associated_stas, 0700);

...

...

debugfs_remove(e->file_loctls.dentry);

/* Our debugfs with special statistics */

/* debugfs_remove(e->debug_fs_file.dentry); */

debugfs_remove(e->file_spec_stat.dentry);

/* Our debugfs with associated stations */

debugfs_remove(e->file_associated_stas.dentry);

...

B. Firmware modifications

To implement the DMS mechanism we do not require to

modify anything at the firmware. We just turn each a multicast

flow into a multiple unicast flow, and this operation is handled

at driver level as explained before.

VII. GCR UNSOLICITED RETRY

The GCR Unsolicited Retry consists in retransmitting the

same frame R times without expecting any ACK. Overall,

the GCR Unsolicited Retry behaves ”exactly” as the legacy

multicast system, apart from the frame retransmissions. This

only requires a small change in the firmware. Moreover,

we perform changes at the driver level, to communicate the

firmware that the transmitted frame is 802.11aa type and

manage it accordingly.

A. Driver modification

Fig. 2 reports the flowchart that represents the high-live

behavior of the driver, which can be enumerated as follows:

1) Check if the incoming frame is an 802.11aa frame.

2) If it is an 802.11aa frame, replace the destination MAC

address with the groupcast address.

3) Transmit the frame to the DMA.

Fig. 2. Flowchart of driver implementation of the GCR UR mechanism.

1) b43 header: We change the main header of the driver,

b43.h. In this file file we add some definition and variables

used for debugging purpose.

...

/* 80211aa define */

#define 80211aa_DEBUG 1

/* the offset of the destination mac address into skb->data

*/

#define DST_MAC_ADDR_OFF 4

...

...

/* Data structure for one wireless device (802.11 core) */

struct b43_wldev {

...

#ifdef 80211aa_DEBUG

/* these variable are used only for debugging

purpose */

unsigned int tx_frame_80211aa;

unsigned int rx_frame_80211aa;

#endif

};

...

2) DMA: The GCR Unsolicited Retry version is quite

simple to implement, we only have to put the legacy frames

in a queue and the 8021aa ones in another. We separate

the frames into 2 queues because the implementation of the

firmware code will result easier. To do this, we add and modify

some function into the management of the DMA, namely

dma.c.

We modify the standard function for the selection of the

queue. We comment all the code inside this function and we

force to select the ring relative to the background queue. We

call this function only in case that we are transmitting legacy

frames.

...

/* Static mapping of mac80211’s queues (priorities) to b43

DMA rings. */

static struct b43_dmaring *select_ring_by_priority(struct

b43_wldev *dev, u8 queue_prio)

{

struct b43_dmaring *ring;

// if (dev->qos_enabled) {

// 0 = highest priority

// switch (queue_prio) {

// default:

// B43_WARN_ON(1);

// case 0:

// ring = dev->dma.tx_ring_AC_VO;

// break;

// case 1:

// ring = dev->dma.tx_ring_AC_VI;

// break;

// case 2:

// ring = dev->dma.tx_ring_AC_BE;

// break;

// case 3:

// ring = dev->dma.tx_ring_AC_BK;

// break;

// }

// } else

// ring = dev->dma.tx_ring_AC_BE;

// We put the normal frame always in the first

queue (queue 0 at firmware level)

ring = dev->dma.tx_ring_AC_BK;

return ring;

}

...

Later we add a function that selects the right ring for the

802.11aa frames. We put each frame into the best effort queue.

...

static struct b43_dmaring *select_ring_by_priority_80211aa(

struct b43_wldev *dev)

{

struct b43_dmaring *ring;

ring = dev->dma.tx_ring_AC_BE;

#ifdef 80211aa_DEBUG

dev->tx_count_qos[QOS_QUEUE_BESTEFFORT]++;

#endif

return ring;

}

...

At the moment to transmit to the DMA, we check if is an

802.11aa frame or not. If it is so, we call the selection of the

queue for these kind of frames, otherwise we call the standard

function.

...

int b43_dma_tx(struct b43_wldev *dev, struct sk_buff *skb)

{

struct b43_dmaring *ring;

struct ieee80211_hdr *hdr;

int err = 0;

struct ieee80211_tx_info *info = IEEE80211_SKB_CB(

skb);

hdr = (struct ieee80211_hdr *)skb->data;

if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)

{

/* The multicast ring will be sent after

the DTIM */

/* We manage the multicast frame like a

unicast frame here

* we put them in the same dma_ring */

//ring = dev->dma.tx_ring_mcast;

ring = select_ring_by_priority(dev,

skb_get_queue_mapping(skb));

/* Set the more-data bit. Ucode will clear

it on

* the last frame for us. */

hdr->frame_control |= cpu_to_le16(

IEEE80211_FCTL_MOREDATA);

} else {

/* Decide by priority where to put this

frame. */

/* if the frame is a 80211aa frame, the

ring will be chosen in round robin mode

*/

if(ieee80211_fragment_is_80211aa(skb->data,

skb->len))

{

ring =

select_ring_by_priority_80211aa

(dev);

#ifdef 80211aa_DEBUG

dev->tx_frame_80211aa++;

#endif

}

else

{

ring = select_ring_by_priority(dev,

skb_get_queue_mapping(skb));

}

}

...

3) Xmit: Another change at driver level is the management

of the acknowledgment. We communicate the firmware that

the 802.11aa frames do not need an ACK, so we disable it.

This is done by modifying in the xmit.c function the MAC

control field into the special header for the b43 devices.

...

int b43_generate_txhdr(struct b43_wldev *dev,

u8 *_txhdr,

struct sk_buff *skb_frag,

struct ieee80211_tx_info *info,

u16 cookie)

{

...

/* MAC control */

if (!(info->flags & IEEE80211_TX_CTL_NO_ACK))

mac_ctl |= B43_TXH_MAC_ACK;

/* Disable ACK timeout for 80211aa frames */

if(ieee80211_fragment_is_80211aa((void*)

fragment_data, fragment_len))

mac_ctl &= ˜B43_TXH_MAC_ACK;

...

}

...

We are sending and receiving a groupcast frames and since

there is no management by the module MLME, we restore the

destination mac address of the packet with the mac address of

device. This does not affect in any way our tests because the

transmission and reception have already occurred.

...

void b43_rx(struct b43_wldev *dev, struct sk_buff *skb,

const void *_rxhdr)

{

...

status.antenna = !!(phystat0 & B43_RX_PHYST0_ANT);

if(ieee80211_fragment_is_80211aa(skb->data, skb->

len)) {

/* restore the dest mac address */

skb->data[DST_MAC_ADDR_OFF + 0] = dev->wl->mac_addr

[0];

skb->data[DST_MAC_ADDR_OFF + 1] = dev->wl->mac_addr

[1];

skb->data[DST_MAC_ADDR_OFF + 2] = dev->wl->mac_addr

[2];

skb->data[DST_MAC_ADDR_OFF + 3] = dev->wl->mac_addr

[3];

skb->data[DST_MAC_ADDR_OFF + 4] = dev->wl->mac_addr

[4];

skb->data[DST_MAC_ADDR_OFF + 5] = dev->wl->mac_addr

[5];

#ifdef 80211aa_DEBUG

dev->rx_frame_80211aa++;

#endif

}

...

}

...

4) Debugfs: These modifications are strictly related to the

debugging purpose. As already explained before, we need

to read some values from the wireless device because some

information are retrievable only by the firmware. The path of

the file of debug created is the following:

/sys/kernel/debug/b43/phy*/spec_stat

We modify header file debugfs.h and add two line of code

with the structs that are our debugging files.

...

struct b43_dfs_file file_loctls;

/* Our debugfs with special statistics */

struct b43_dfs_file file_spec_stat;

struct b43_txstatus_log txstatlog;

...

The path of the debugfs into b43 driver where are imple-

mented all the debugging functions is the following:

user@celeborn ˜/linux-2.6.36/drivers/net/wireless/

b43 \$ debugfs.c

The following function permits to read the values exported

through debugfs. When we access on reading the file that we

have created into the debugfs, the kernel calls this function

that takes care to recover all current values from the device

and to write them into the debugfs file.

...

static ssize_t spec_stat_read_file(struct b43_wldev *dev,

char *buf, size_t bufsize)

{

ssize_t count = 0;

unsigned long flags;

unsigned int high, low, qos_queue;

// Lock the spin

spin_lock_irqsave(&dev->wl->hardirq_lock, flags);

// DRIVER LEVEL

fappend("DRIVER LEVEL:\n\n");

fappend("80211aa frames sent: %d\n", dev->

tx_frame_80211aa);

fappend("80211aa frames received: %d\n", dev->

rx_frame_80211aa);

// Unlock the spin

spin_unlock_irqrestore(&dev->wl->hardirq_lock, flags);

return count;

}

...

The last step is to communicate to the kernel the right

function to use when we access the file in reading. We do

this adding these few lines:

...

B43_DEBUGFS_FOPS(loctls, loctls_read_file, NULL);

/* Our debugfs with special statistics */

/* B43_DEBUGFS_FOPS(debugs_fs_file,

* function_called_on_reading,

* function_called_on_writing); */

B43_DEBUGFS_FOPS(spec_stat, spec_stat_read_file, NULL);

...

Fig. 3. Flowchart of the firmware implementation of the GCR Unsolicited
Retry mechanism.

...

ADD_FILE(loctls, 0400);

/* Our debugfs with special statistics */

/* ADD_FILE(debufs_fs_file, permissions_definition)

*/

ADD_FILE(spec_stat, 0600);

#undef ADD_FILE

...

...

debugfs_remove(e->file_loctls.dentry);

/* Our debugfs with special statistics */

/* debugs_remove(e->debug_fs_file.dentry); */

debugfs_remove(e->file_spec_stat.dentry);

debugfs_remove(e->subdir);

...

B. Firmware modifications

Fig. 3 reports the flowchart that represents the high-level

behavior of the firmware, which can be summarized as fol-

lows:

1) Transmit the frame.

2) If it is an 802.11aa frame, check if we have already sent

it R times; if not, return to 1.

3) Flush the frame and report the transmission status to the

driver.

For implementing GCR UR at firmware level we must keep

in mind the following:

1) The groupcast MAC address assignment is statically

configured as we have already said that the manage-

ment procedure implementation and the mechanism to

announce and join the groupcast group is out-of scope.

2) The destination MAC address of outgoing packets from

the AP must be changed to the groupcast address.

3) The receiver must recognize the groupcast packets and

send them up at driver level.

4) The groupcast frame must be transmitted R times.

a) Shared memory: To pass information from the

firmware to the driver and vice versa we use the shared

memory. First, we add some definition strictly related to the

functioning of the firmware, which communicates the driver

that QoS is supported, so the driver enables all the queues.

b) Registers: To implement the 80211aa mechanism we

store some values during the firmware execution, e.g., the

number of frames sent. We have 18 registers available that

we can use as we wish. The free registers are the register

from REG46 to REG63.

c) Common definitions: We define the groupcast address

for both sender and receiver.

...

#define BEACON0_TEMPLATE_ADDR 0x0068

#define BEACON1_TEMPLATE_ADDR 0x0468

/* the groupcast group address

* the notation is the network one -> be:ef:be:ef:be:ef */

#define MCAST_GROUP_ADDR1 0xefbe

#define MCAST_GROUP_ADDR2 0xefbe

#define MCAST_GROUP_ADDR3 0xefbe

#define NEED_BEACON (MASK(COND_NEED_BEACON))

#define NEED_RESPONSEFR (MASK(COND_NEED_RESPONSEFR)

)

...

1) Transmitter: We implement the transmission of the

groupcast frames an arbitrary number of times R without

expecting any ACK frame. Then, we define how many times

the firmware has to transmit the same frame, which can be

configured to any integer. However for latency reasons we

just use values between 1 and 8, following the value of the

802.11 long retry.

#define NUM_RESEND_FRAME 4

Following, we communicate the driver that the firmware

supports the QoS. We also modify the behavior of queue

selection, by using only 2 queues: one for unicast traffic and

the other for 802.11aa frames. At the time when we load

the header of the packet into the shared memory we check

the queue bitmap SPR TXE0 FIFO RDY and properly update

[SHM TXFCUR].

Following, when we transmit a packet and the

[SHM TXFCUR] is non-zero it means that we are transmitting

an 802.11aa frame, in this case we update the destination

MAC address to the groupcast one. Once the frame is sent R

times we flush the queue.

2) Receiver: At the reception, when the firmware receives a

packet addressed to its source MAC address ot to the multicast

address, it sends it to upper layers. The groupcast address is

not a multicast address7. So, we modify the firmware to not

discard the groupcast frames.

check_frame_subtype:

...

srxh REG19 & 3, REG34

je REG34, 0x001, rx_control_frame

jext COND_RX_RAMATCH, rx_frame_and_ra_match

/* check the first byte of address1 */

MOV(MCAST_GROUP_ADDR1, TMP1)

7An 802.11 multicast address has the less significative bit of the first octet
set to 1

jne [RX_FRAME_ADDR1_1,off1], TMP1,

check_frame_subtype_continue

/* check the second byte of address1 */

MOV(MCAST_GROUP_ADDR2, TMP1)

jne [RX_FRAME_ADDR1_2,off1], TMP1,

check_frame_subtype_continue

/* check the third byte of address1 */

MOV(MCAST_GROUP_ADDR3, TMP1)

jne [RX_FRAME_ADDR1_3,off1], TMP1,

check_frame_subtype_continue

jext COND_TRUE, send_frame_to_host_continue

check_frame_subtype_continue:

...

VIII. GCR BLOCK ACKNOWLEDGEMENT

The GCR Block Acknowledgement is the most complex

scheme among the 802.11aa GATS mechanisms. First, we

must manage the retransmissions. In 802.11 unicast mech-

anism the retransmissions are handled by the firmware and

only involves one frame at a time. The maximum number of

times that a frame can be retransmitted is variable. The 802.11

standard defines two different retry limits:

• long retry: A frame can be retransmitted up to 4 times.

• short retry: A frame can be retransmitted up to 7 times.

A transmitter may choose which limit to use and this will

be very useful in this implementation. As already said the

commodity 802.11 hardware is very limited so we have to

examine the capabilities of the BCM4318 hardware and find a

way to retransmit at least up to 4 times a burst of 64 frames.

Furthermore, for this scheme we must keep the operation status

as we send a burst of frames and following we perform the

Block Ack polling procedure to each associated station. Then,

we must resend all the frames requested if required.

In one hand, these frames can be easily stored at the driver

level, although this implementation is not feasible due to the

timely operations. The time required to send the information

from the firmware to the driver and then resend the packets

from the driver to the firmware is very high, being impossible

to obey the timing imposed by the SIFS interval. On the other

hand, if these frames are stored at the firmware level there is

not enough memory. The Shared Memory (SHM) of device is

only 4KB large, thus it is not possible to store all packets in

it. That is why we use the QoS queues. The b43 device [6] is

compliant to the 802.11e standard, then supporting more than

one transmission queue. We use the FIFO queues as buffers

to store the packets to retransmit. In this way we transmit

the burst and keep a copy of the original packets in the others

queues. In the case a frame is received correctly we just flush it

from the queue without retransmitting it, otherwise, the frame

will be retransmitted. The size of the burst, namely M , is up

to 64 frames according to IEEE 802.11aa.

Then, we decide to use the long retry limit and retransmit

only up 4 times each frame. The scheme is the following:

• queue 0: This queue transmits the initial burst.

• queue 1-4: These queues store the frames to retransmit.

To do this, when the driver transmits an 802.11aa frame it

copies the same frame into the retransmitting queues. In this

Fig. 4. Flowchart of the driver implementation of the GCR BlockAck
mechanism.

way the driver fills all queues at the same time and when

the firmware must retransmit any packet it simply retrieves

it from one of retransmitting queues. For the implementation

it is necessary to make some important modification to the

driver.

A. Driver modification

Fig. 4 reports the flowchart that represents the high-level

behavior of the driver. The behavior can be schematized as

follows:

1) Check if the incoming frame is an 802.11aa frame.

2) If it is an 802.11aa frame, replace the destination MAC

address with the groupcast address.

3) Check if there is at least one free slot in each of the

DMA rings to replicate the packets for retransmissions.

4) If there is a free slot in each DMA ring copy the frame

in each ring, otherwise stop the queue and wait until we

have a free slot in each DMA ring.

5) Transmit the frame to the DMA.

1) b43 header: We change the main header of the driver,

b43.h. In this file file we add some definition and variables

used for debugging purpose.

...

/* xenakis define */

#define XENAKIS_DEBUG 1

/* the default size of a xenakis burst */

#define XENAKIS_FRAMEBURST_SIZE 8

/* the offset of the control field into skb->data */

#define FRAME_CONTROL_OFF 1

/* the offset of the destination mac address into skb->data

*/

#define DST_MAC_ADDR_OFF 4

/* the offset of the sequence number filed into skb->data

*/

#define SEQ_NUM_OFF 22

/* the maximum number of associated clients */

#define NUM_STAS 100

/* the starting sequence number */

#define IEEE80211AA_SEQ_NUM 800

/* the range where to store the MAC address of the stations

within the SHM */

#define B43_SHM_STAS_LB 0xD00

#define B43_SHM_STAS_UB 0xE00

/* the variable in SHM where to store the number of

associated stations */

#define B43_SHM_STAS_NUM 0xFA0

/* the variable in SHM where to store the size of the burst

*/

#define B43_SHM_BURST_SIZE 0xFA8

/* the variable in SHM where to store the bitmap associated

to the size of the burst, word0 */

#define B43_SHM_DEFAULT_BITMAP_WORD0 0xFAA

/* the variable in SHM where to store the bitmap associated

to the size of the burst, word1 */

#define B43_SHM_DEFAULT_BITMAP_WORD1 0xFAC

/* the variable in SHM where to store the bitmap associated

to the size of the burst, word2 */

#define B43_SHM_DEFAULT_BITMAP_WORD2 0xFAE

/* the variable in SHM where to store the bitmap associated

to the size of the burst, word3 */

#define B43_SHM_DEFAULT_BITMAP_WORD3 0xFB0

...

The QoS queues are defined in an enum struct:

...

enum {

QOS_QUEUE_VOICE = 0,

QOS_QUEUE_VIDEO,

QOS_QUEUE_BESTEFFORT,

QOS_QUEUE_BACKGROUND,

QOS_QUEUE_MULTICAST,

};

...

We also add some debugging variables into the struct b43-

wldev.

...

struct b43_wldev {

...

#ifdef XENAKIS_DEBUG

/* these variable are used only for debugging purpose

*/

unsigned int tx_frame_xenakis;

unsigned int tx_burst_xenakis[XENAKIS_FRAMEBURST_SIZE];

unsigned int rx_frame_xenakis;

/* we have 5 qos queues, 1 for the normal traffic and 4

for the xenakis traffic */

unsigned int tx_count_qos[5];

#endif

};

...

In the struct b43 wl we add some configuration variables

necessary for the operation of the driver.

...

struct b43_wl {

...

/* the global variable for the current size of the

burst */

int ieee80211aa_burst_size;

/* use a immediate blockack or a delayed blockack? */

int ieee80211aa_delayed_back;

/* the global index of last associated station */

int last_client_index;

/* the global variable for the list of associated

stations */

u8 assoc_client[NUM_STAS][ETH_ALEN+1];

...

};

...

2) Main: In the main file, main.c we copy the packet to

send and transmit it to DMA into the right queue. Here we

update the sequence number of the frame, which the standard

leaves open for configuration. Normally, this is handled at

firmware level but for convenience we update it here. For

testing purposes, we add a module parameter to change the

burst size, namely M .

At the beginning of the file there is the definition of module

parameter and the initialization of the sequence number.

...

/* the sequence number used for 802.11aa frames */

static u16 ieee80211aa_seq_num = IEEE80211AA_SEQ_NUM;

/* the parameter used to change the size of the burst */

static int _ieee80211aa_burst_size =

XENAKIS_FRAMEBURST_SIZE;

module_param_named(bsize, _ieee80211aa_burst_size, int,

0444);

MODULE_PARM_DESC (bsize, "Set the number of frames sent in

one burst [1-64] (default 8)");

/* the parameter used to enable or disable the delayed

blockAck */

static int _ieee80211aa_delayed_back = 0;

module_param_named(back, _ieee80211aa_delayed_back, int,

0444);

MODULE_PARM_DESC(back, "Set the BACK mechanism: 0 for

immediate, 1 for delayed (default 0)");

...

This is the most important function in this file. Here, we

check if the packet that is being transmitted is an 802.11aa

frame, if so we change the destination MAC address, update

the sequence number, copy the packet for each QoS queue at

DMA level and set a bit to communicate to the functions into

dma.c where to put this frame.

...

static int b43_op_tx(struct ieee80211_hw *hw, struct

sk_buff *skb)

{

struct sk_buff *skb_c;

int i, tmp_seq;

...

if(ieee80211_fragment_is_xenakis(skb->data, skb->

len)) {

/* We change here the destination MAC address to

groupcast one */

skb->data[DST_MAC_ADDR_OFF+0] = 0xbe;

skb->data[DST_MAC_ADDR_OFF+1] = 0xef;

skb->data[DST_MAC_ADDR_OFF+2] = 0xbe;

skb->data[DST_MAC_ADDR_OFF+3] = 0xef;

skb->data[DST_MAC_ADDR_OFF+4] = 0xbe;

skb->data[DST_MAC_ADDR_OFF+5] = 0xef;

tmp_seq = (ieee80211aa_seq_num << 4);

skb->data[SEQ_NUM_OFF+0] = (tmp_seq & 0x00F0);

skb->data[SEQ_NUM_OFF+1] = ((tmp_seq & 0xFF00) >>

8);

skb->priority = 0;

}

skb_queue_tail(&wl->tx_queue[skb->queue_mapping], skb);

if(ieee80211_fragment_is_xenakis(skb->data, skb->len))

{

/* copy the packets for the retransmission */

for(i = 0; i < 4; i++) {

skb_c = skb_copy(skb, GFP_ATOMIC);

skb_c->priority = (i+1);

skb_c->data[FRAME_CONTROL_OFF] |= 0x08;

skb_queue_tail(&wl->tx_queue[skb_c->

queue_mapping], skb_c);

}

}

if (!wl->tx_queue_stopped[skb->queue_mapping])

ieee80211_queue_work(wl->hw, &wl->tx_work);

else

ieee80211_stop_queue(wl->hw, skb->queue_mapping);

if(ieee80211_fragment_is_xenakis(skb->data, skb->len))

{

/* the sequence number is updated in module 2ˆ12 */

ieee80211aa_seq_num = ((ieee80211aa_seq_num+1) &

4095);

}

return NETDEV_TX_OK;

}

...

When we are going to transmit the packet we have to check

if there is at least one free space in every DMA ring so that

to avoid a DMA ring overflow.

...

static void b43_tx_work(struct work_struct *work)

{

...

for (queue_num = 0; queue_num < B43_QOS_QUEUE_NUM;

queue_num++) {

while (skb_queue_len(&wl->tx_queue[queue_num])) {

skb = skb_dequeue(&wl->tx_queue[queue_num]);

/* check if is a 802.11aa frame and

we haven’t at least 1 free

space in every dma ring */

if(ieee80211_fragment_is_xenakis(skb->data,

skb->len) &&

!(((dev->dma.tx_ring_AC_BK->nr_slots -

dev->dma.tx_ring_AC_BK->used_slots) >

0) &&

((dev->dma.tx_ring_AC_BE->nr_slots -

dev->dma.tx_ring_AC_BE->used_slots)

> 0) &&

((dev->dma.tx_ring_AC_VI->nr_slots -

dev->dma.tx_ring_AC_VI->used_slots)

> 0) &&

((dev->dma.tx_ring_AC_VO->nr_slots -

dev->dma.tx_ring_AC_VO->used_slots)

> 0) &&

((dev->dma.tx_ring_mcast->nr_slots -

dev->dma.tx_ring_mcast->used_slots)

> 0)

)) {

wl->tx_queue_stopped[queue_num] = 1;

ieee80211_stop_queue(wl->hw, queue_num);

skb_queue_head(&wl->tx_queue[queue_num],

skb);

break;

}

...

}

...

}

...

}

...

When we load the module we can pass the parameter bsize

to specify the size of the burst, also we can pass the parameter

back to specify which BlockAck mechanism to use. This

function validates the configuration parameters values and if

they are correct it updates the driver with those parameters.

...

static int b43_wireless_init(struct ssb_device *dev)

{

...

/* check the number of frames to use in every

single burst,

* if the number is not supported, set it to default */

if(_ieee80211aa_burst_size < 1 ||

_ieee80211aa_burst_size > 64) {

b43info(wl, "XENAKIS: Requested number of frames is

not supported, default to %d",

XENAKIS_FRAMEBURST_SIZE);

_ieee80211aa_burst_size = XENAKIS_FRAMEBURST_SIZE;

}

else {

b43info(wl, "XENAKIS: Using %d frames for every

burst\n", _ieee80211aa_burst_size);

}

wl->ieee80211aa_burst_size = _ieee80211aa_burst_size;

/* check the modality of the BACK, immediate or delayed

? */

if(_ieee80211aa_delayed_back < 0 ||

_ieee80211aa_delayed_back > 1) {

b43info(wl, "XENAKIS: Requested BACK modality not

supported, default to 0");

_ieee80211aa_delayed_back = 0;

}

else {

if(_ieee80211aa_delayed_back) {

b43info(wl, "XENAKIS: Using Delayed BlockAck\n

");

}

else {

b43info(wl, "XENAKIS: Using Immediate BlockAck\

n");

}

}

wl->ieee80211aa_delayed_back =

_ieee80211aa_delayed_back;

/* the index of last associated station, we keep the

count, we start from -1 */

wl->last_client_index = -1;

...

}

...

3) DMA: We must place the normal frame in a queue

and the new ones in the other four queues in a round robin

fashion. To do this, we add and modify some function into the

management of the DMA, namely dma.c.

First, we modify the standard function for the selection of

the queue. We comment all the code inside this function and

force to select the ring relative to the background queue. We

call this function only in case that we are transmitting normal

frames.

/* Static mapping of mac80211’s queues (priorities) to b43

DMA rings. */

static struct b43_dmaring *select_ring_by_priority(struct

b43_wldev *dev, u8 queue_prio)

{

struct b43_dmaring *ring;

// if (dev->qos_enabled) {

// 0 = highest priority

// switch (queue_prio) {

// default:

// B43_WARN_ON(1);

// case 0:

// ring = dev->dma.tx_ring_AC_VO;

// break;

// case 1:

// ring = dev->dma.tx_ring_AC_VI;

// break;

// case 2:

// ring = dev->dma.tx_ring_AC_BE;

// break;

// case 3:

// ring = dev->dma.tx_ring_AC_BK;

// break;

// }

// } else

// ring = dev->dma.tx_ring_AC_BE;

// We put the normal frame always in the first

queue (queue 0 at firmware level)

ring = dev->dma.tx_ring_AC_BK;

return ring;

}

Second, we add a function that takes care to select the right

ring for the 802.11aa frames. We put each frame into one

of the following queues: best effort queue, video queue, voice

queue, multicast queue. We select each queue in a round robin

fashion. This way to operate permits to store each frame into

a different queue, so, in case of necessity, we can resend the

frame that is kept into the queue.

/* Static mapping of mac80211’s queues (priorities) to b43

DMA rings, 80211aa.

* The mapping is done in round robin */

static struct b43_dmaring *
select_ring_by_priority_ieee80211aa(struct b43_wldev *
dev,

u32 queue_prio)

{

struct b43_dmaring *ring;

switch(queue_prio)

{ // we use the same order as in the firmware

case 0: ring = dev->dma.tx_ring_AC_BK; break;

case 1: ring = dev->dma.tx_ring_AC_BE; break;

case 2: ring = dev->dma.tx_ring_AC_VI; break;

case 3: ring = dev->dma.tx_ring_AC_VO; break;

case 4: ring = dev->dma.tx_ring_mcast; break;

default:

b43dbg(dev->wl, "This is a bug, we are trying

to put a frame in the queue %d that doesn’t

exists", queue_prio);

}

#ifdef XENAKIS_DEBUG

switch(queue_prio)

{

case 0: dev->tx_count_qos[QOS_QUEUE_BACKGROUND]++;

break;

case 1: dev->tx_count_qos[QOS_QUEUE_BESTEFFORT]++;

break;

case 2: dev->tx_count_qos[QOS_QUEUE_VIDEO]++;

break;

case 3: dev->tx_count_qos[QOS_QUEUE_VOICE]++;

break;

case 4: dev->tx_count_qos[QOS_QUEUE_MULTICAST]++;

break;

}

#endif

return ring;

}

At the moment to transmit to the DMA, we check if is a

802.11aa frame or not. If it is, we call the selection of the

queue for these type of frame, otherwise we call the standard

function.

int b43_dma_tx(struct b43_wldev *dev, struct sk_buff *skb)

{

struct b43_dmaring *ring;

struct ieee80211_hdr *hdr;

int err = 0;

struct ieee80211_tx_info *info = IEEE80211_SKB_CB(

skb);

hdr = (struct ieee80211_hdr *)skb->data;

if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM)

{

/* The multicast ring will be sent after

the DTIM */

/* We manage the multicast frame like a

unicast frame here

* we put them in the same dma_ring */

//ring = dev->dma.tx_ring_mcast;

ring = select_ring_by_priority(dev,

skb_get_queue_mapping(skb));

/* Set the more-data bit. Ucode will clear

it on

* the last frame for us. */

hdr->frame_control |= cpu_to_le16(

IEEE80211_FCTL_MOREDATA);

} else {

/* Decide by priority where to put this

frame. */

/* if the frame is a 80211aa frame, the

ring will be choosen in round robin

mode */

if(ieee80211_fragment_is_80211aa(skb->data,

skb->len))

{

ring =

select_ring_by_priority_80211aa

(dev, skb->priority);

#ifdef 80211aa_DEBUG

dev->tx_frame_80211aa++;

#endif

}

else

{

ring = select_ring_by_priority(dev,

skb_get_queue_mapping(skb));

}

}

...

4) Xmit: These changes are necessary to communicate to

the firmware how to manage this frame and we also pass to

the firmware the sequence number of current packet.

In the xmit.h file there exist 2 bytes not used in the

transmission header, which we utilize to communicate all the

information that we wish to the firmware.

...

struct b43_txhdr {

...

union {

/* The new r410 format. */

struct {

__le16 mimo_antenna; /* MIMO antenna

select */

__le16 preload_size; /* Preload size */

// PAD_BYTES(2);

__le16 ieee80211aa_ctl; /* The control

field for 80211aa packets */

__le16 cookie; /* TX frame cookie */

...

struct b43_plcp_hdr6 plcp; /* Main PLCP header

*/

} new_format __packed;

...

} __packed;

...

The format of new format.ieee80211aa ctl is shown as

follows:

• bit 0x000F: The control bit, if set to 1 means that this is

an 802.11aa frame.

• bit 0xFFF0: The sequence number of the frame.

We also modify the xmit.c to change the ACK operation. We

communicate to the firmware that the 802.11aa frames do not

need an ACK, so we disable it. We modify the MAC control

field into the special header for the b43 devices. In this way the

standard mechanism is disabled but, of course, we perform in

the firmware a BlockAck procedure. We communicate to the

firmware which BlockAck mechanism to use, if the immediate

one or the delayed one. This communication is made through

setting some control bit in the transmission header of the

packet. We also fill the header with the sequence number.

...

int b43_generate_txhdr(struct b43_wldev *dev,

u8 *_txhdr,

struct sk_buff *skb_frag,

struct ieee80211_tx_info *info,

u16 cookie)

{

...

if(ieee80211_fragment_is_xenakis(skb_frag->data,

skb_frag->len)) {

txhdr->new_format.ieee80211aa_ctl = 1;

txhdr->new_format.ieee80211aa_ctl |= (((

skb_frag->data[SEQ_NUM_OFF+1] << 8) |

skb_frag->data[SEQ_NUM_OFF+0]) & 0xFFF0

);

if(dev->wl->ieee80211aa_delayed_back)

txhdr->new_format.ieee80211aa_ctl |= 4;

}

...

/* MAC control */

if (!(info->flags & IEEE80211_TX_CTL_NO_ACK))

mac_ctl |= B43_TXH_MAC_ACK;

/* Disable ACK timeout for 80211aa frames */

if(ieee80211_fragment_is_80211aa((void*)

fragment_data, fragment_len))

mac_ctl &= ˜B43_TXH_MAC_ACK;

...

}

...

We are sending and receiving a groupcast frames and since

there is no management by the module MLME, we restore the

destination mac address of the packet with the mac address of

device. This does not affect in any way our tests because the

transmission and reception have already occurred.

...

void b43_rx(struct b43_wldev *dev, struct sk_buff *skb,

const void *_rxhdr)

{

...

status.antenna = !!(phystat0 & B43_RX_PHYST0_ANT);

if(ieee80211_fragment_is_80211aa(skb->data, skb->

len)) {

/* restore the dest mac address */

skb->data[DST_MAC_ADDR_OFF + 0] = dev->wl->mac_addr

[0];

skb->data[DST_MAC_ADDR_OFF + 1] = dev->wl->mac_addr

[1];

skb->data[DST_MAC_ADDR_OFF + 2] = dev->wl->mac_addr

[2];

skb->data[DST_MAC_ADDR_OFF + 3] = dev->wl->mac_addr

[3];

skb->data[DST_MAC_ADDR_OFF + 4] = dev->wl->mac_addr

[4];

skb->data[DST_MAC_ADDR_OFF + 5] = dev->wl->mac_addr

[5];

#ifdef 80211aa_DEBUG

dev->rx_frame_80211aa++;

#endif

}

...

}

...

5) Debugfs: In this BlockAck version the debugfs behaves

exactly like in DMS version, which is already described in

VI-A4.

The path of the file created for the special statistics is the

following:

/sys/kernel/debug/b43/phy*/spec_stat

The path of the file created to communicate the MAC

address of associated stations is the following:

/sys/kernel/debug/b43/phy*/associated_stas

a) Header: We modify header file debugfs.h and add two

line of code with the structs that are our debugging files.

...

struct b43_dfs_file file_loctls;

/* Our debugfs with special statistics */

struct b43_dfs_file file_spec_stat;

/* Our debugfs with associated stations */

struct b43_dfs_file file_associated_stas;

struct b43_txstatus_log txstatlog;

...

b) Code: The debugfs.c which implements all the de-

bugging functions communicates the MAC address of an

associated station to the driver and to the firmware. When the

file associated stas is accessed in writing the kernel calls this

function. The purpose of this function is to receive a string as

input, parse the string and, as first thing, saves the address into

the variable dev->wl->assoc client and afterwards it copies

the value also into the SHM of the wireless device. The format

of the MAC address to pass is the following:

00:11:22:33:44:55

Here there is the function, we have to pay attention that we

do not check the validity of the input passed. This can be a

security hole but we do not care about it because this is only

a implementation for a testing purpose.

...

static int cur_shm_addr = B43_SHM_STAS_LB - 6;

static int associated_stas_write_file(struct b43_wldev *dev

, const char *buf, size_t bufsize)

{

int i;

// now we do not check if the address is well formatted

, maybe in the future

u8 addr[6];

u16 c1, c2, c3;

uint32_t bitmap0 = 0xFFFFFFFF;

uint32_t bitmap1 = 0xFFFFFFFF;

sscanf(buf, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &addr[0],

&addr[1], &addr[2], &addr[3], &addr[4], &addr[5]);

/* the first element of dev->wl->assoc_client[i] is the

offset of the shm where is stored */

for(i = 0; i <= dev->wl->last_client_index; i++) {

if(addr[0] == dev->wl->assoc_client[i][1] &&

addr[1] == dev->wl->assoc_client[i][2] &&

addr[2] == dev->wl->assoc_client[i][3] &&

addr[3] == dev->wl->assoc_client[i][4] &&

addr[4] == dev->wl->assoc_client[i][5] &&

addr[5] == dev->wl->assoc_client[i][6]) {

break;

}

}

if(i <= dev->wl->last_client_index) {

printk("The client %02x:%02x:%02x:%02x:%02x:%02x is

already present\n", addr[0], addr[1], addr[2],

addr[3], addr[4], addr[5]);

return -1;

}

if(dev->wl->last_client_index+1 >= NUM_STAS || (

cur_shm_addr + 6) >= B43_SHM_STAS_UB) {

printk("Reached the maximum number for the

associated client, can’t add %02x:%02x:%02x

:%02x:%02x:%02x\n",

addr[0], addr[1], addr[2], addr[3], addr

[4], addr[5]);

return -1;

}

dev->wl->last_client_index++;

for(i = 0; i < ETH_ALEN; i++)

dev->wl->assoc_client[dev->wl->last_client_index][i

+1] = addr[i];

cur_shm_addr += 6;

dev->wl->assoc_client[dev->wl->last_client_index][0] =

cur_shm_addr - B43_SHM_STAS_LB;

c1 = (addr[1] << 8 | addr[0]);

c2 = (addr[3] << 8 | addr[2]);

c3 = (addr[5] << 8 | addr[4]);

b43_shm_write16(dev, B43_SHM_SHARED, cur_shm_addr, c1);

b43_shm_write16(dev, B43_SHM_SHARED, cur_shm_addr+2, c2

);

b43_shm_write16(dev, B43_SHM_SHARED, cur_shm_addr+4, c3

);

b43_shm_write16(dev, B43_SHM_SHARED, B43_SHM_STAS_NUM,

dev->wl->last_client_index+1);

printk("%d client associated:\t%02x:%02x:%02x:%02x:%02x

:%02x\n",

dev->wl->last_client_index+1,

dev->wl->assoc_client[dev->wl->last_client_index

][1],

dev->wl->assoc_client[dev->wl->last_client_index

][2],

dev->wl->assoc_client[dev->wl->last_client_index

][3],

dev->wl->assoc_client[dev->wl->last_client_index

][4],

dev->wl->assoc_client[dev->wl->last_client_index

][5],

dev->wl->assoc_client[dev->wl->last_client_index

][6]);

return 0;

}

This function is called when the file associated stas is

accessed in reading. This function is not necessary for a correct

working of BA mechanism but is useful to check if the MAC

addresses of associated stations are stored correctly.

...

static ssize_t associated_stas_read_file(struct b43_wldev *
dev, char *buf, size_t bufsize)

{

ssize_t count = 0;

unsigned long flags;

int i;

spin_lock_irqsave(&dev->wl->hardirq_lock, flags);

for(i = 0; i <= last_client_index; i++) {

fappend("%02x:%02x:%02x:%02x:%02x:%02x\n",

assoc_client[i][0], assoc_client[i][1],

assoc_client[i][2],

assoc_client[i][3], assoc_client[i][4],

assoc_client[i][5]);

}

// Unlock the spin

spin_unlock_irqrestore(&dev->wl->hardirq_lock, flags);

return count;

}

...

When we access the file spec stat created into the debugfs

on a read operation, the kernel calls this function that recovers

all current values from the device and writes them into the

debugfs file.

...

static ssize_t spec_stat_read_file(struct b43_wldev *dev,

char *buf, size_t bufsize)

{

ssize_t count = 0;

unsigned long flags;

unsigned int high, low, qos_queue;

// Lock the spin

spin_lock_irqsave(&dev->wl->hardirq_lock, flags);

// DRIVER LEVEL

fappend("DRIVER LEVEL:\n\n");

fappend("80211aa frames sent: %d\n", dev->

tx_frame_80211aa);

fappend("80211aa frames received: %d\n", dev->

rx_frame_80211aa);

spin_unlock_irqrestore(&dev->wl->hardirq_lock, flags);

return count;

}

...

The last step is to communicate to the kernel the right

function to use when we access the files in reading and writing.

We do this adding these few lines:

...

B43_DEBUGFS_FOPS(loctls, loctls_read_file, NULL);

/* Our debugfs with special statistics */

B43_DEBUGFS_FOPS(spec_stat, spec_stat_read_file, NULL);

/* Our debugfs with associated stations */

B43_DEBUGFS_FOPS(associated_stas, associated_stas_read_file

, associated_stas_write_file);

...

...

ADD_FILE(loctls, 0400);

/* Our debugfs with special statistics */

ADD_FILE(spec_stat, 0600);

/* Our debugfs with associated stations */

ADD_FILE(associated_stas, 0700);

...

...

debugfs_remove(e->file_loctls.dentry);

/* Our debugfs with special statistics */

debugfs_remove(e->file_spec_stat.dentry);

/* Our debugfs with associated stations */

debugfs_remove(e->file_associated_stas.dentry);

...

B. Firmware modifications

Fig. 5 reports the flowchart that represents the high-level be-

havior of the firmware implementing the transmitter features,

which is summarized as follows:

1) Check in which transmission phase is the firmware.

2) If we are going to transmit new frames, transmit the

frame.

3) If we are going to retransmit frames, check if we have

to retransmit this frame or we can flush it.

4) If we are going to start a BAR procedure, transmit the

BAR frame and wait a BA frame.

5) If we haven’t received a BA frame, resend the BAR up

to 4 times.

Fig. 5. Flowchart of the firmware implementation of the GCR BlockAck
mechanism.

6) If we have received a BA frame or reached the maximum

number of retransmission for a BAR frame, proceed with

next station

7) After a transmission, a retransmission or a BAR proce-

dure, flush the frame present within the queue.

8) If we have sent a burst, made the BAR procedure we

can pass to next transmission/retransmission phase.

The high-level behavior of the firmware implementing the

receiver features, which is more simple, is shown in the

following:

1) If we receive a groupcast frame calculate the difference

between the sequence number of current frame and the

sequence starting control of last seen BAR. Set to 1 the

corresponding bit in the BA bitmap.

2) If we receive a BAR, calculate the difference between

the sequence starting control just received and the se-

quence starting control of last seen BAR. Shift right the

bitmap in BA and send back the frame.

c) Shared memory: To pass information from the

firmware to the driver and vice versa we use the shared

memory. We add some definition strictly related to the func-

tioning of the firmware such as: the QoS support value, the

memory region where the driver saves the MAC address of

the associated stations, the number of associated stations,

their MAC addresses, the size of the burst and the associated

bitmap, the bitmap of the frame to retransmit, the buffer for

the retransmission bitmap used to decide if a frame must be

flushed or retransmitted, the bitmap of received frames, and

the bitmap of retransmitted frames.

d) Registers: To implement the 80211aa mechanism we

store some values during the execution of the firmware. We

have 18 registers available that we can use as we wish. The

free registers are those from REG46 to REG63. Some of these

values are: the first sequence number of this burst, the last

start sequence control received by the station, or the number

of transmitted packets.

/* The first sequence number of this burst */

#define FIRST_SEQ_NUM_TX_80211AA REG46

/* The last Starting Sequence Control received by

* the receiver */

#define LAST_BAR_SEQ_NUM REG47

/* The number of transmitted packets */

#define IEEE80211AA_SENT REG48

e) Common definitions: We report here the common

definitions and some instructions required by both the receiver

and transmitter. First, we define the subtype value for the

PLCP control frame header for both BAR and BA frame.

...

#define TS_BA 0x025

#define TS_BAR 0x021

...

Both the sender and the receiver have the same definitions

of the groupcast address, we simply add some define its own.

...

/* the multicast group address, the notation is the

* network one -> be:ef:be:ef:be:ef */

#define MCAST_GROUP_ADDR1 0xefbe

#define MCAST_GROUP_ADDR2 0xefbe

#define MCAST_GROUP_ADDR3 0xefbe

...

The Block Ack agreement implies a negotiation of a Starting

Sequence Number for the burst. We define this sequence

number statically.

...

#define SEQ_NUM_NEGOTIATED 800

...

When we have to send a BA request or a reply we must

communicate to the firmware the rate at which this frame is

sent. For convenience we add some definitions.

...

#define RATECODE_6MB 0xB

#define RATECODE_9MB 0xF

#define RATECODE_12MB 0xA

#define RATECODE_18MB 0xE

#define RATECODE_24MB 0x9

#define RATECODE_36MB 0xD

#define RATECODE_48MB 0x8

#define RATECODE_54MB 0xC

#define RATECODE_BAR RATECODE_36MB

...

Besides, we inform the driver that the firmware supports

QoS such that the driver can enable and initialize all the

necessary structures. When the firmware is initialized, we

load the negotiated sequence number into two variables used

afterwards by the firmware. We first prepare BAR and BA

Fig. 6. BlockAck Request frame format

Fig. 7. BlockAck Request: Control Field format

Fig. 8. BlockAck Request: Information Field format

Fig. 9. BlockAck Request: Starting Sequence Control Field format

frames in the SHM during device initialization, then the

firmware copies them from the SHM to template.

When we receive a PLCP for a control frame we have to

check if this PLCP is for a BAR or BA frame.

...

rx_plcp_control_frame:

je REG19, TS_ACK, rx_ack

/* handle reception of either BAR or BA */

je REG19, TS_BAR, rx_bar

je REG19, TS_BA, rx_ba

...

1) Transmitter: We analyze the changes made to the

firmware needed to implement the sending of a burst of frames

and the sending of a BAR frame.

a) Build BAR template: Figs. 6, 7, 8, 9 present the frame

format of a Block Ack request.

In Section VIII-B0e we explain how the template of a BAR

frame is stored in the shared memory. In the main routine we

must fill this template.

We also modify the firmware to enable sending a burst of

frames. When we send a burst we change the IFS according

to the position of the frame within the burst. If is the first

frame we have to set a DIFS, otherwise we set a SIFS. To

communicate to the firmware to send a frame after a SIFS we

write the value 0x4001 in the register SPR TXE0 CTL, instead

to send a frame after a DIFS we write the value 0x4C1D.

After a successful transmission the firmware listens the

channel to measure the noise present on the channel. We must

avoid this measurement for every frame of the burst. We also

update the counter of transmitted frames, we are at the end

of transmission phase so we are sure to have transmitted the

frame. In this way we can update the counter safely.

As already said we make a copy of every single packet in

each queue so, according to transmission phase we select the

right queue and we will send all the packets we need from

this queue. To do this we check if there is ready the queue

into the register SPR TXE0 FIFO RDY.

If we are in transmission phase we send the frame but if

we are in retransmission phase we have to check if this frame

must be retransmitted. We do this comparing the position of

the current frame into the burst and the retransmission bitmap,

if the relative bit is set into the bitmap we retransmit the frame

otherwise we flush it.

Once seen that there is a packet ready in a queue we

load the transmission header of the packet into the shared

memory. We have to update the [SHM TXFCUR] with the

number of the queue selected. Let pay attention that we

have to put the number of queue and not the bitmap as in

SPR TXE0 FIFO RDY. The number of the queue must be

put into the third byte of [SHM TXFCUR].

After a transmission or a flush of a frame we check if we

have reached the number of packets transmitted or flushed for

this burst equal to size of the burst. If so we proceed to the next

phase, reset some variable, update the retransmission bitmap

and update the counter IEEE80211AA RETR in module 5

since we use 5 queues.

The sequence number is updated at driver level, so in the

firmware we avoid the update. In case we are transmitting

new frames we have to store the first sequence number of

the burst. This same number is used afterwards as Starting

Sequence Number (SSN) during the BAR procedure.

During a retransmission phase we do the same operation

about storing sequence number. Moreover, in the retransmis-

sion phase, we build a bitmap of retransmitted frames. This is

necessary because when we exchange BAR/BA we put within

the BAR the first sequence number that we have transmitted.

Let’s suppose now that we have retransmitted frame 1 and

3 of the burst because solicited only by the previous BAR

procedure. The station that sends back the BA can not know

that the second frame has never retransmitted, so it will mark

this frame as missing. The transmitter, building this bitmap

during the retransmission phase, detects which frames have

been correctly received.

After The AP sends a complete burst, it starts the BAR

procedure. First, we check if we are in the transmission or

retransmission phase because the check is different depending

on the case. In case we are in the transmission phase we have

simply to check if we have reached a number of packets sent

equal to burst size. Instead if we are in the retransmission

phase we have to check if there is no more packet to retransmit

after this. Once the conditions are satisfied we can start

the BAR procedure. To communicate to the firmware that

we have to send a BAR and to wait for receiving a BA

we made a little trick. As first thing we set to 1 the bit

COND FRAME NEED ACK into the transmission header.

Setting this causes the firmware to wait an ACK, in our case

a BA. The second thing to do is to set into the transmission

header a bit to communicate that we have to send a BAR. In

this way, each time that we do not receive a BA, the firmware

retransmit the BAR instead of the packet.

When we have to transmit a BAR we transmit it from the

TemplateRAM and we use the Transmission Modify Engine

to modify some field like the destination MAC address of

selected station and the Starting Sequence Control that must

be set to the first sequence number of the burst that has just

been sent.

When we send a BAR we have to manage the timeout for

receiving a BA. The timeout is managed in the same way

is managed the timeout for an ACK. A BAR frame must

be sent after a SIFS in the Immediate BlockAck version we

set this parameter into NEXT TXE0 CTL. Upon sending a

BAR we inform the firmware the PLCP subtype field expected

for the BA response. If we have correctly received a BA

after a BAR we can pass to the next station jumping to

next sta label. If we have already retransmitted a BAR up

to LONG RETRY LIMIT, pass to the next station.

To pass to next station we increase the pointer relative to

the MAC address of associated stations. The pointer points to

the region of the shared memory where the MAC addresses

of all clients are stored as explained in Section VIII-A5.

When we receive a BA we have to save the bitmap sent

back by the client. Before storing this bitmap we have to

execute some operation. The client marks to 1 the relative

bit of every packet correctly received, at the transmitter side

we do not need to know the packets correctly received but

only the packets that has gone lost.

2) Receiver: When the firmware receives a packet it dis-

cards the frames that are not management type or whose

destination address does correspond to its address or multicast

address. The groupcast address is not a multicast address. In

this case, we modify the firmware to accept frames address

to the groupcast. Furthermore, when the station receives a

groupcast frame it needs to build the bitmap and sent within

a Block Ack reply upon request.

To build the bitmap we simply set to 1 the bit in position

equal to the difference between the Start Sequence Control

received with the last BAR and the sequence number just

received.

Figs. 101112 illustrate the frame format of a Block Ack.

Fig. 10. BlockAck frame format

In Section VIII-B0e we suppose that we have already stored

the template of a BA frame within the shared memory, now

we report how we fill the shared memory with this template.

When we receive a BAR we have to transmit the BA

from the TemplateRAM and we use the Transmission Modify

Fig. 11. BlockAck: Control Field format

Fig. 12. BlockAck: Information Field format (GCR BlockAck)

Engine to modify some field like the source MAC address,

the Starting Sequence Control that must be set equal to the

one into the BAR just received and bitmap of packet correctly

received. Also we have to save the Starting Sequence Control

included in the BAR as LAST BAR SEQ NUM. Before copy-

ing the retransmission bitmap into the BA we have to check

if we have to shift right the whole bitmap because sometimes

it happens that the BAR of the previous burst has gone lost

so we have to realign the bitmap. We always shift to right the

bitmap a number of position equal to the difference between

the current Starting Sequence Control and the last that the

client has received.

When we receive a BAR we send back an acknowledgment

frame, we have to set up the firmware so that it will send back

a BA instead of a ACK.

IX. CONCLUSION

This document aims to detail all the implementation details

required for the design of the 802.11 GATS mechanisms.

REFERENCES

[1] “Official webpage of the wireless-testing project for linux b43 driver,”
http://linuxwireless.org/en/users/Drivers/b43, Feb. 2013.

[2] F. Gringoli and L. Nava, “Open firmware for wifi networks,”
http://www.ing.unibs.it/openfwwf/, Feb. 2013.

[3] “Official webpage of the wireless-testing
project for pid rate control algorithm,”
http://wireless.kernel.org/en/developers/Documentation/mac80211/RateControl/PID,
Feb. 2013.

[4] “Official webpage of the wireless-testing
project for minstrel rate control algorithm,”
http://wireless.kernel.org/en/developers/Documentation/mac80211/RateControl/minstrel,
Feb. 2013.

[5] M. Buesch, “Official git repository for b43-tools,”
git://git.bues.ch/b43-tools.git, Feb. 2013.

[6] “Official webpage of broadcom wireless lan solutions,”
http://www.broadcom.com/products/Wireless-LAN/802.11-Wireless-LAN-Solutions,
Feb. 2013.

http://linuxwireless.org/en/users/Drivers/b43
http://www.ing.unibs.it/openfwwf/
http://wireless.kernel.org/en/developers/Documentation/mac80211/ RateControl/PID
http://wireless.kernel.org/en/developers/Documentation/mac80211/ RateControl/minstrel
git://git.bues.ch/b43-tools.git
http://www.broadcom.com/products/Wireless-LAN/802.11-Wireless-LAN-Solutions

	TR-IMDEA-Networks-2013-2-Cover
	TR-IMDEA-Networks-2013-2-Text
	Introduction
	Linux and the WLAN networks
	Software overview
	OpenFWWF
	Features overview

	Platform overview
	Required modifications
	Common driver modifications

	Directed Multicast Service
	Driver modifications
	b43 header
	Main
	Xmit
	Debugfs

	Firmware modifications

	GCR Unsolicited Retry
	Driver modification
	b43 header
	DMA
	Xmit
	Debugfs

	Firmware modifications
	Transmitter
	Receiver

	GCR Block Acknowledgement
	Driver modification
	b43 header
	Main
	DMA
	Xmit
	Debugfs

	Firmware modifications
	Transmitter
	Receiver

	Conclusion
	References

