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Abstract. Energy consumption is an important issue in the design and
use of networks. In this paper, we explore energy savings in networks
via a rate adaptation model. This model can be represented by a cost-
minimization network routing problem with discrete cost functions. We
formulate this problem as an integer program, which is proved to be
NP-hard. Then a constant approximation algorithm is developed. In our
proposed method, we first transform the program into a continuous-cost
network routing problem, and then we approximate the optimal solution
by a two-step rounding process. We show by analysis that, for uniform
demands, our method provides a constant approximation for the uniform
network routing problem with discrete costs. A bicriteria network routing
problem is also developed so that a trade-off can be made between energy
consumption and network delay. Analytical results for this latter model
are also presented.

Keywords: network optimization, network routing, approximation

1 Introduction

Energy-aware computing has recently become a hot research topic. The increas-
ingly widespread use of Internet and the sprouting of data centers are having a
dramatic impact on the global energy consumption. The energy consumed comes
from the aggregate power used by many devices (CPUs, hubs, switches, routers).
Recent studies ([13], [14]) show that there is significant room for energy saving
in current networks in general. The main reason for this is that these networks
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are designed with a significant level of redundancy and over-provisioning, to
guarantee QoS and to tolerate peak load and traffic variations. However, since
networks usually carry only a small fraction of the peak, a significant portion
of the energy consumed is wasted. Ideally, the energy consumed in a network
should be proportional to the traffic load carried.

Prior work on energy efficiency have mostly focused on two techniques to save
energy: speed scaling and powering down. Under speed scaling, it is assumed that
the power consumed by a device working at speed s has the form P = sβ , where
β > 1 is a constant. This comes from the well known cube-root rule, which states
that the speed is approximately the cube root of the power consumed. Thus, the
general energy saving model with speed scaling results in a network routing
problem with a convex polynomial cost function fe(xe) = µex

β
e , where µe and

β are constants, and xe is the total traffic carried by device e (see [5], [7], [8],
[11], [17]). Another approach to save energy is achieved by powering down the
devices while they are idle. Andrews et al. [4] considered that network elements
operate only in the full-rate active mode or the zero-rate sleeping mode. They
demonstrated a trade-off between energy consumption and latency. Nedevschi
et al. [15] explored both speed scaling and power down to reduce global energy
consumption. Heller et al. [9] proposed a centralized method named ElasticTree,
which powers down some of the routers or switches and then yields the energy-
efficient routes in the data center network. At the same time, some other models,
such as the adversary queueing model, were used to explore the energy saving
in networks [3].

In this paper we consider an energy saving model called rate adaptation. In
this model, network devices can operate in one of several speeds and each device
chooses a proper state according to its current traffic load. Gunaratne et al. [12]
first proposed a method which worked with the adaptive link rate (ALR). Also
in [15], the authors studied the rate adaptive model combined with powering
down devices. Here we will present a formal model that uses rate adaptation as
power saving strategy and provides route assignment for message transmission
from a global view of the network. Then an approximation method to solve the
energy saving problem will be developed.

1.1 Related Work

The network routing problem is described as follows. We are given a set of traffic
demands and want to inseparably route them over a transmission network. The
total traffic xe on link e incurs a cost which is defined by a cost function fe(xe).
Our objective is to find routes for all demands so that the total incurred cost∑
e fe(xe) is minimized.
There has been significant work on the general network routing problem.

Note that the complexity of this problem depends on the cost function defined
on each edge. For instance, if we choose fe(·) as subadditive functions which
have the property of economies of scale, the problem becomes the well-studied
Buy-at-Bulk problem. Awerbuch and Azar [6] provided an O(log2 n) random-
ized approximation algorithm for this problem. Andrews [1] showed that for
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any constant γ > 0, there is no O(log
1
2−γ N)-approximation algorithm for non-

uniform Buy-at-Bulk, and there is no O(log
1
4−γ N)-approximation algorithm for

the uniform version, unless NP ∈ ZPTIME (npolylog n).
Closely related to our paper is the work of Andrews et al. [2]. The authors

studied a new kind of minimum-cost network design with (dis)economic of scale
and presented a polylogarithmic approximation algorithm to solve this problem.
In [5], randomized rounding was used to achieve a constant approximation for
uniform demands. Bansal et al. [7] studied the speed scaling model with arbi-
trary cost functions. They gave a (3+ ε)-competitive algorithm for this problem.
Unlike the works mentioned above, we focus on the network routing problem
with discrete cost functions rather than continuous ones.

1.2 Our Results

We aim to solve the minimum-energy routing in this paper. In Section 2, we
give the formalized expression of the model and then prove it is hard to approx-
imate. In Section 3, we introduce our proposed method. It first transforms the
model into a general network routing problem with continuous cost functions.
This is done by transforming the discrete function f(·) into a continuous func-
tion g(·) introducing a bounded error. Then uses a two-step rounding process
to approximate the optimal set of routes. An analysis is given to show that our
method obtains a constant approximation for this problem. In Section 4, we ex-
tend our model to a bicriteria network routing problem which considers not only
the energy cost but also the latency so that trade-off can be made between the
performance and energy consumption. Last, in Section 5, we draw conclusions.

2 The Model

We are given a directed graph G = (V,E) and a set of traffic demands D =
(d1, d2, ..., dk) where the ith demand, 1 ≤ i ≤ k, requests di units of bandwidth
provisioned between a source node si and a sink node ti. Unless otherwise said,
in the following we assume unit demands, i.e., di = 1. We assume that links
represent the abstracted resources, and each link can operate at one of a constant
number of different rates R1 < R2 < ... < Rm. Note that for energy conservation
consideration, it is reasonable to set numbers of different rates for newly designed
network devices. Each rate Ri, 1 ≤ i ≤ m, has an cost of f(Ri). Our goal is to
route all demands in a unsplittable fashion with the objective of minimizing the
total cost. Note that unsplittable routing is important in many cases in order to
avoid packets reordering.

2.1 Hardness

Not surprisingly, the minimum cost routing problem with discrete functions is
NP-hard. Furthermore, we show here that, in general, it cannot even be approx-
imated. This is shown in the following theorem.
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Theorem 1. There is no polynomial time approximation algorithm for the min-
imum cost routing problem with any finite approximation ratio, unless P=NP.
This holds even if all links have the same cost function f(·), and the function is
discrete and takes only 2 values.

Proof. We prove the theorem by using reduction from the edge-disjoint paths
(EDP) problem. This problem decides whether a given collection of pairs (a
source and a sink in each pair) of nodes can be connected via edge-disjoint
paths in a given network. It is known that EDP is NP-hard. We show now that
any algorithm A that ρ-approximates (1 ≤ ρ < ∞) the minimum cost network
routing problem for uniform discrete cost functions of 2 values can be used to
solve the EDP problem. This will prove the theorem.

Consider an instance of the EDP problem on a network G. The instance of
the network routing problem has one unit demand for each pair of nodes. The
cost function is as follows.

f(x) =

{
0 x ≤ 1,

1 1 < x .
(1)

Observe that if there are disjoint paths for the pairs of the EDP problem, then
the network routing problem has a solution of zero cost. Then, algorithm A
must return a solution that also has zero cost. On the other hand, if there are
no disjoint paths, the optimal solution of the network routing problem has cost
at least 1, and A will return a solution whose cost is in the interval [1, ρ]. Hence,
the algorithms A can be used to solve the EDP problem.

From the above reduction, we conclude that the problem is hard to be ap-
proximated because we have not given any restrictions on f(Ri)/f(Ri−1) which
may be unbounded. If we bound the ratio between any two adjacent steps of
the cost function, the reduction in the proof of Theorem 1 can not be built, and
the inapproximability result may not hold any more. In particular, the problem
with restricted step ratio can be approximated by a constant approximation ra-
tio. We will give the details in the following sections and will discuss the step
cost function with step ratio restriction. From now on, we will regard the above
ratio as a constant.

2.2 Integer Program Formulation

Formally, we can formulate the described routing problem with integer program
(P1). The binary variable yi,e indicates whether demand i uses link e, while
xe is the total load on e. Flow conservation means that for each demand i the
source si generates a flow of di, the sink absorbs a flow di, and for the other
vertices the incoming and outgoing flows of demand i are the same. Observe
that for xe ≤ ze, f(xe) = f(ze). This results in the discrete property of the cost
function f(·). More precisely, f(x) is a non-decreasing step function of x, where
x is the speed of each link. In practice, cost functions for network resources can
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be different. Here we just take a uniform cost function for convenience. There is
no doubt that solving (P1) is NP-hard for the 0− 1 constraint on variable yi,e.
Since solving our network routing problem is NP-hard (as implicitly shown in
Theorem 1), so we have no hope on finding the optimal solution.

(P1) min
∑
e

f(ze)

subject to

xe =
∑
i

yi,e ∀e

xe ≤ ze ∀e
ze ∈ {R0, R1, ..., Rm} ∀e
yi,e ∈ {0, 1} ∀i, e
yi,e : flow conservation

3 The Approximation Algorithm

In this section, it is shown how to approximate a solution of (P1). First we use
a particular interpolation method to transform the cost function of the origi-
nal program into a continuous one, which is indeed to relax the discretion. It
makes the program to be solvable while introducing a bounded error. Then, we
approximately solve the transformed program by a two-step rounding process.
This process assigns routes to the demands and determines the rates of links.
We assign a path for each demand by randomized rounding and then round the
link rates based on the determined routes. At last, we analyze the performance
of the proposed method.

3.1 Transforming the Program

We use a special interpolation method to simplify our optimization program by
replacing the step function f(·) with a continuous function g(·). Before apply-
ing interpolation, we have to decide the form of the function g(x) we want to
get. It has suggested that most network devices consume energy in a superad-
ditive manner [5]. That is, doubling the speed more than doubles the energy
consumption. Hence the energy curve is often modeled by a polynomial function
g(x) = µxβ where µ and β are constants associated with network elements. More
precisely, the parameter β in the ordinary form of energy consumption has been
usually assumed to be in the interval (1, 3) [10]. The objective here is to trans-
form a step cost function into a function in the form of g(x) = µxβ . Although,
as mentioned, typically β will be larger than 1, and hence g(·) will be a convex
function, the proposed interpolation method does not impose such restriction.

Now we discuss how to apply the transformation from a step function to a
continuous one. A common approach has been using midpoints of the steps as
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discrete values and fitting by mean squares. This approach is not appropriate
if the step of the function have unequal length. Another popular method is to
do interpolation on a set of points which is obtained by sampling the original
function. Unfortunately, using this technique the error of the interpolation de-
pends on the sampling method we choose, and is hard to be estimated. Here we
use an alternative [16] based on integral minimization, where each point on the
original function has to be considered as an observation. Without depending on
some other parameters, the method works well for the fitting of step functions.

Definition Consider the original function f(x), and the one to be fitted g(x),
as described before. f(x) is defined as follow.

f(x) =


y1, x0 < x ≤ x1,
y2, x1 < x ≤ x2,
...

ym, xm−1 < x ≤ xm,

(2)

where in our case yi = f(Ri) (1 ≤ i ≤ m) is the energy consumption value of
each state and xi = Ri, xi+1 = Ri+1 (0 ≤ i < m) represents the lower and
upper boundaries of the speed for each state. We aim to fit g(x) to f(x).

Integral Minimization The integral to minimize can be represented as

G(µ, β) =

∫
[f(x)− g(x|µ, β)]2dx

=

m∑
i=1

∫ xi

xi−1

[yi − (µxβ)]2dx .
(3)

Since g(x) is not a linear function, this minimization problem is hard to solve.
But it is linear in a logarithmic transformation. Observe that

log(g(x)) = log µ+ β log x . (4)

Let us define vi = log yi, w = log x, and µ′ = logµ. Then, the alternative integral
that we will in fact use can be obtained as

H(µ, β) =

m∑
i=1

∫ wi

wi−1

[vi − (µ′ + βw)]2dw. (5)

And now (5) is to be minimized with respect to the parameters of the general
quadratic equation. Necessary conditions obtained by setting the first partial
derivatives equal to zero are
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
∂H

∂µ′
=

m∑
i=1

∫ wi

wi−1

−2[vi − µ′ − βw]dw = 0,

∂H

∂β
=

m∑
i=1

∫ wi

wi−1

−2w[vi − µ′ − βw]dw = 0 .

(6)

It is obvious that the second derivatives are all positive. By solving equation (6),
we can get the values of parameters µ′ and β, and from µ′ it is obtained µ. From
these, the objective function g(x) of the interpolation can be determined.

Bound on the Interpolation Error As our method is proposed to approxi-
mate the optimal solution, it is important to bound the error introduced. Dur-
ing the interpolation process, the error comes from the gap between the original
function f(x) and the fitted function g(x). We define this gap as follow.

Gap = max
x

{
f(x)

g(x)
,
g(x)

f(x)

}
. (7)

While using this gap definition as interpolation error, we can show the following
theorem.

Theorem 2. Given a f(x) such that yi/yi−1 ≤ σ (σ > 1), the interpolation
error satisfies Gap ∈ [ 2σ

σ+1 , σ], when y0 6= 0.

Proof. (Sketch) The proof is conducted as follows. It can be shown that functions
f(·) and g(·) intersect in each interval [Ri−1, Ri]. This is the key of the proof.
Then, consider two cases f(x) ≥ g(x) and f(x) ≤ g(x). In both cases we assume
there is a bound δ for the interpolation error, and then we derive that δ satisfies
some conditions in order to maintain the bound. Thus we obtain the results.

As a result, the error is not so big because our interpolation method aims to
minimize the error. Another observation is that the cost is decreased when
f(x) > g(x) but increased when f(x) < g(x). This brings a two side effects
on the error.

New Integer Program Once the function g(x) is obtained, the optimization
can be rewritten as follows.

(P2) min
∑
e

g(xe)

subject to

xe =
∑
i

yi,e ∀e

yi,e ∈ {0, 1} ∀i, e
yi,e : flow conservation
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The problem now turns into an integer program with a convex 1 objective func-
tion. Of course we can conclude that the problem is still NP-hard for the convex
objective and the 0-1 constraint on yi,e.

3.2 Two-step Rounding

In this section, we introduce a two-step rounding method to complete the routing
and rates determination. Our routing problem has been transformed into integer
programming (P2) with a convex objective function. After solving (P2), we also
need to choose a proper transmission rate for each link.

First we use randomized routing in (P2) to approximate the optimal cost
and extract routing paths for all demands. The basic idea of randomized routing
is to use random choices to convert an optimal solution of a relaxation of the
problem into a probabilistically provable approximation to the optimal solution
of the original problem. To apply it to (P2), first the binary constraint yi,e ∈
{0, 1} is relaxed to yi,e ∈ [0, 1]. This transforms the integer program into a
linear program (with convex objective function), which is optimally solvable in
polynomial time. Then, we get the optimal fractional solution by solving the
relaxed convex programming. Finally, randomized decisions are used to round
the fractional flow.

We use the Raghavan-Thompson randomized rounding. The algorithm runs
as follows. Once the optimal fractional solution has been found, the flow assigned
to links is mapped to flows in paths as follows. For each demand i, first we
generate a sub-graph Gi defined by links e where y∗i,e > 0. (The flows, or weights,
y∗i,e are the optimal fractional solution of the relaxed program.) Then, we extract
a path p connecting the source and destination nodes and select the weight y∗i,e
of the bottleneck link e ∈ p to be the weight of this path, which is denoted as
wp. Hereafter the weight y∗i,e of each link e in path p is decreased by wp. Run
the above procedure repeatedly until all weights y∗i,e on the Gi become zero.
Because of the flow conservation constraint, this can always be achieved. At
last, we randomly select one path for each demand i using the path weights as
probabilities. After this rounding, there is one path for each demand.

Secondly, the state of each link should be determined after the demand routes
have been chosen. We select the speed of each link via the following rounding
procedure. First, the carried traffic x̂e of each link e is calculated as x̂e =

∑
i ˆyi,e,

where ˆyi,e is the amount of demand i that traverses link e after the rounding.
Then for each link, we search the collection of possible operational speeds and
choose the minimal se that can support the carried traffic. More formally,

se = min{Ri|(i ∈ [1,m]) ∧ (x̂e ≤ Ri)}. (8)

With this the minimum cost routing problem with discrete cost functions has
been solved as we have determined the link states and routed all the demands.

1 Assuming β ≥ 1. If β < 1, then g(·) is a concave function, and hence we have
an instance of the Buy-at-Bulk problem. As mentioned, there is no constant ratio
approximation in this case.
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3.3 Performance Evaluation

Now we analyze the approximation ratio of the proposed approximation algo-
rithm. Let x∗e be the flow on link e under the optimal fractional routing, x̂e
be the rounded flow, and se be the selected operating state for link e by our
methods. We show,

Theorem 3. Let the ratio between any two adjacent steps of cost function f(·)
be bounded by σ. For unit demands, the expected cost obtained with our routing
method, E[

∑
e f(se)], is a γ-approximation of the optimal solution with respect

to the discrete cost function f(x), where γ is a constant.

The proof of this theorem proceeds by two steps. First we give the relation
between solution by our two-step rounding and the one by Raghavan-Thompson
randomized rounding. And then we bound the latter to optimal. Using these two
results, we obtain the approximation ratio of the two-step rounding.

For the optimal fractional solution, the cost can be represented as
∑
e g(x∗e),

and for the solution by Raghavan-Thompson randomized rounding, it is
∑
e g(x̂e),

while after the two-step rounding, it is
∑
e f(se). As we have discussed before,

the gap between the original function f(x) and the fitted function g(x) has two
sides effect on the total cost. Assume se = Ri, consider the following case.

Lemma 1. If the ratio between any two adjacent steps of cost function f(·) is
bounded by σ, then f(se) ≤ σ2g(x̂e).

Proof. The result follows since, from Theorem 2, the largest gap between g(x̂e)
and f(x̂e) is σ. Then, from the relation between se and x̂e (see Eq. 8), also
f(se) ≤ σf(x̂e). And by Theorem 2, we have f(se) ≤ σ2f(x̂e), which completes
the proof.

Now we can give the proof of Theorem 3.

Proof. The expected cost of the solution found is E[
∑
e f(se)]. From Lemma 1,

we have that f(se) ≤ σ2g(x̂e), and hence E[
∑
e f(se)] ≤ σ2E[

∑
e g(x̂e)]. As it

was shown in [5], there is a constant δ such that E[
∑
e g(x̂e)] ≤ δ

∑
e g(x∗e).

To complete the proof, we observe from Theorem 2 that, for all x, g(x)/σ ≤
f(x). Then, if C∗ is the cost the optimal solution of the routing problem with the
step function f(·), the optimal fractional solution of the relaxation of P2 satisfies
that C∗ ≥

∑
e g(x∗e)/σ. Putting it all together, we have that E[

∑
e f(se)] ≤

σ2δ
∑
e g(x∗e) ≤ σ3δC∗.

This result can be applied to uniform demands easily. For uniform demands
where each traffic demand requests a bandwidth di = d, the total flow on each
edge is d times of that in the case with unit demands. So we have,

Corollary 1. For uniform demands, our routing method can also obtain a γ-
approximation to the optimal integral solution in expectation, where γ is a con-
stant.
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4 Model Extension: Bicriteria Network Routing

We give an extension to model (P2) in this section. For practical applications,
we should consider the network performance as well as the energy consumption.
There are many issues related to the network performance, like queueing de-
lay, transmission delay etc. For convenience consideration, here we just take the
transmission delay from si to ti for demand i as an example, but other assump-
tions can also work in our extended model. In order to express this new added
metric, we assume on each edge e of original graph G = (V,E), we have given
a scale le to describe the latency. Thus our routing problem has two objectives,
which are energy saving and network latency minimization.

We first consider the case in which the average latency of routing all the
demands is restricted to be smaller than a value of L. So for the model (P2), we
have an additional constraint∑

i

∑
e

le · yi,e ≤ L . (9)

For solving this problem, we can simply introduce a Lagrange multiplier λ and
then move the constraint to the objective function as

min
∑
e

g(xe) + λ(
∑
i

∑
e

leyi,e − L) . (10)

Using the Lagrange relaxation, we can solve the constrained minimum cost rout-
ing problem we have just talked in previous sections. And by the property of
Lagrange relaxation, easily we have that solutions obtained by Lagrange relax-
ation are always the lower bound of the optimal integer solution. By setting λ
to different values, we choose a good solution from the results.

As to better understand the trade-off between energy saving and network
latency, we now analyse the bicriteria network routing model. The problem can
be described as minimizing both energy consumption and network latency as two
objectives. Here we use an aggregated objective function method to deal with it.
Recall that in (P2) we only take energy consumption in consideration, and aim to
minimize it. Now we introduce a parameter α to make a convex combination of
the two objectives of interest (minimizing both energy consumption and latency).
As we have presented, after the interpolation process, the energy consumption
cost is given by a convex function. Denote the energy cost as Coste and latency
cost as Costl. The total cost is obtained as Cost = α · Coste + (1− α)Costl.

The convex combination can preserve the convex property of the two indi-
vidual costs. And thus our routing problem with objective to minimizing the
combined cost is still a convex programming. So the methods we proposed in
the previous sections are still contributing. At the same time, the introduced pa-
rameter α provide flexibility in our model where adjusting α to different values
leads to different trade-off effects for the two unrelated metrics. In particular,
when α is set to be zero, the total cost only consists of the latency cost. Thus
the problem is degraded to be the shortest path routing, which is polynomial
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time solvable. And α = 1 leads to the routing problem with only one objective
to minimize the energy cost, which we have just studied before.

We explore now the ratio between the latency of the routes found with our
method and the latency of the shortest paths. That is the stretch ratio ri, that we
define for a demand i as the latency of paths we obtain divides by the latency of
shortest paths. Then we define the Stretch as the maximum stretch ratio among
all demands.

Stretch = max
i∈[1,k]

{ri} . (11)

Using this definition, we have

Theorem 4. There is no bound between the latency of the paths used in the
trade-off method and the latency of the shortest paths. In other words, the stretch
can not be bounded.

The proof of this theorem is omitted from this extend abstract. As a result,
the only way to obtain good performance for this trade-off is to choose a proper
value for α. In practice, we can vary α in (0, 1) to get the relation between the
two objectives, which helps to determine the parameter. Usually, satisfying the
necessary performance requirements, we aim to maximize the energy savings.

5 Conclusion

In this paper, we investigate the network routing problem with discrete cost
functions which aims to route demands under a minimum cost way. The problem
comes from the green computing sceneries which are quite important recently.
Our contributions are mainly on the following results: for the rate adaptive
energy-saving strategy, we give a model expression by an integer program which
is believed to be NP-hard; our proposed method for solving this problem consists
of two parts. First we provide a particular interpolation method to transform
the discrete cost function into a continuous one which makes the complicated
integer program solvable. Then a two-step rounding method is developed to
give routes to demands and determine link rates by approximately solving the
integer program. By using this method, we obtain a constant approximation to
the optimal for uniform demands; also we discuss how to extend our original
model to a bicriteria network routing which can give trade-off between the two
metrics.
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