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Abstract

   Normal TCP/IP operation is for the routing system to select a best
   path that remains stable for some time, and for TCP to adjust to the
   properties of this path to optimize throughput.  A multipath TCP
   would be able to either use capacity on multiple paths, or
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   dynamically find the best performing path, and therefore reach higher
   throughput.  By adapting to the properties of several paths through
   the usual congestion control algorithms, a multipath TCP shifts its
   traffic to less congested paths, leaving more capacity available for
   traffic that can’t move to another path on more congested paths.  And
   when a path fails, this can be detected and worked around by TCP much
   more quickly than by waiting for the routing system to repair the
   failure.

   This memo specifies a multipath TCP that is implemented on the
   sending host only, without requiring modifications on the receiving
   host.
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1.  Introduction

   In order to achieve redundancy to protect against failures, network
   operators generally install more links than the minimum necessary to
   achieve reachability.  So there are often multiple paths between any
   two given hosts, even when paths not allowed by policy are removed.
   However, routing protocols usually select a single "best" path.  When
   multiple paths are used at the same time by the routing system, those
   tend to be parallel links between two routers or paths that are
   otherwise very similar.  As such, a lot of potentially usable network
   capacity is left unused.  A multipath transport protocol would be
   able to use more of that capacity by sending its data along multiple
   paths at the same time, or by switching to a path with more available
   capacity.

   As TCP [RFC0793] is used by the vast majority of all networked
   applications, and TCP is responsible for the vast majority of all
   data transmitted over the internet, the logical choice would be to
   make TCP capable of using multiple paths.  SCTP already has the
   ability to use multiple paths through the use of multiple addresses.
   However, using SCTP in this way requires significant application
   changes and deployment would be challenging because there is no
   obvious way for an application to know whether a service is available
   over SCTP rather than, or in addition to, TCP.  In addition, SCTP as
   defined today [RFC2960] does not accommodate the concurrent use of
   multiple paths.  Additional paths are purely used for backup
   purposes.

   This memo describes a one-ended multipath TCP, which only changes the
   behavior of the TCP sender, achieving multipath advantages when
   communicating with unmodified TCP receivers.  This means it is not
   possible to perform path selection by using different destination
   addresses.  However, other mechanisms that are transparent to the
   receiver are possible.  A simple one would be for the sender to send
   some packets to one router, and other packets to another router.  If
   these routers then make different routing decisions for the
   destination address in the TCP packets, the packets flow over
   different paths part of the way.  Other mechanisms to achieve the
   same goal are also possible.  However, with a single destination
   address, paths can’t be completely disjoint.

   Using multiple paths at the same time brings up a number of
   challenges and questions:

   o  Naive scheduling (such as round robin) of transmissions over the
      different paths reduces performance of each path to that of the
      slowest path.
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   o  Using multiple paths causes reordering, which triggers the fast
      retransmit algorithm, causing unnecessary retransmissions and
      reduced performance.

   o  TCP requires in-order delivery of data to the application, so when
      losses occur on one path, buffer capacity may run out and data
      can’t be transmitted on unaffected paths until the lost data has
      been retransmitted.

   o  Using multiple paths with an instance of regular congestion
      control on each path for a single TCP session makes that session
      use network capacity more aggressively than single path sessions,
      which can be considered "unfair" and increases packet loss.

   This memo seeks to address the first two issues by running separate
   instances of TCP’s congestion control algorithms for the subflows
   that flow over different paths.  Buffer issues are addressed by
   retransmitting packets before buffer space runs out, even if normal
   retransmission timers haven’t fired yet.  The fairness issue is a
   topic of ongoing research; this specification simply limits the
   number of subflows to limit unfairness and increased loss.

   The one-ended multipath TCP takes advantage of the fact that TCP
   [RFC0793] congestion control [RFC2581] and flow control are performed
   by the sender.  With regard to flow control and congestion control,
   the role of the receiver is limited to sending back acknowledgments
   and advertise how much data it is prepared to receive.  Hence, it is
   possible for the sender to utilize different paths and modify the
   fast retransmit logic as long as the receiver recognizes the packets
   as belonging to the same session.  So a multipath TCP sender can
   distribute packets over multiple paths as long as this doesn’t
   require incompatible modifications to the IP or TCP header contents,
   most notably the addresses.  A single-ended multipath TCP session
   must still be between a single source address and a single
   destination address, regardless of the path taken by packets.

   The subset of the packets belonging to a TCP session flowing over a
   given path is designated a subflow.

   In order to benefit from using multiple paths, it’s necessary for the
   multipath TCP sender to execute separate TCP congestion control
   instances for the packets belonging to different subflows.  In the
   case where all packets are subject to the same congestion window,
   performance over a fast and a slow path will often be poorer than
   over just the fast path, defeating the purpose of using multiple
   paths.  For instance, in the case of a 10 Mbps and a 100 Mbps path
   with otherwise identical properties, a simple round robin
   distribution of the packets and the use of a single congestion window
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   will limit performance to that of the slowest path multiplied by the
   number of paths, 20 Mbps in this case.

2.  Notational Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Congestion control

   A multipath TCP maintains instances of all congestion control related
   variables for each subflow.  This includes, but is not limited to,
   the congestion window, the ssthresh, the retransmission timeout
   (RTO), the user timeout and RTT measurements.  However, because TCP
   requires in-order delivery of data, there must be a single send
   buffer and a single receive buffer, thus flow control must happen
   session-wide.

   Per-subflow congestion control is performed by recording the path
   used to transmit each packet.  Acknowledgments are then attributed to
   the subflow the acknowledged packets were sent over and the
   congestion window and other congestion control variables for the
   relevant subflow are updated accordingly.

3.1.  RTT measurements

   Because a multipath TCP sender knows which packet it sent over which
   path, it can perform per-path round trip time measurements.  This
   only works if return packets are consistently sent over the same path
   (or a set of paths with the same latency).  If the receiver is not
   multipath-aware, this condition will generally hold: acknowledgments
   will flow from the receiver to the sender over a single path unless
   there is a topology change in the routing system or packets that
   belong to a single session are distributed over different paths by
   routers, which is rare.  To multipath-capable routers on the return
   path (if any), the non-multipath-aware host appears to select the
   default path for all of its packets.

   However, if, like the sender, the receiver is multipath-aware, then
   the return path that the receiver chooses to send ACKs over will
   influence the RTTs seen by the original sender.  The situation where
   the sender is unaware of fact that the receiver selects different
   return paths with different latencies is suboptimal, even compared to
   consistently measuring the RTT over the slowest path, as this leads
   to higher variability in the RTT measurements and therefore a higher
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   RTO.

   Having the receiver send ACKs over the same path mitigates the
   problem somewhat; but presumably, if the receiver is also multipath
   capable and has data to send, it will want to send this data over
   more than one path.  So RTT measurements may inadvertently end up
   measuring different return paths in that case.  A better solution is
   for the sender to include an indication in packets that allows the
   receiver to determine through which path the sender sent the packet.
   This information, along with the path initially chosen for the
   outgoing packet that is acknowledged, allows TCP to attribute each
   RTT measurement to a specific path.

   Because congestion control happens per path, there must also be a
   separate retransmission timeout (RTO) value for each path.

3.2.  Fast retransmit

   Different paths will almost certainly have different RTTs, and even
   if the average RTT is the same, normal burstiness and differences in
   packet sizes will make packets routinely arrive through the different
   paths in a different order than the order in which they were
   transmitted.  Without modifications to the algorithm, this would
   trigger the fast retransmit algorithm unnecessarily.  To avoid this,
   fast retransmit is executed whenever, for packets belonging to the
   same subflow, after an unACKed packet or sequence of packets, more
   than two segments of new data is ACKed with SACK.  This means fast
   retransmit happens per subflow, and reordering between subflows no
   longer triggers fast retransmit.

3.3.  Slow retransmit

   In multipath TCP, a per-path RTO is employed to recover from
   congestion events that fast retransmit can’t handle.  Because the
   missing packets create holes in the data stream, subsequent packets
   received over other paths must be buffered in the receive buffer.
   Unless the receive buffer is extremely large, this means the entire
   session stalls when the receive buffer fills up.  This situation
   persists until the RTO expires for the congested or broken path so
   the missing packets can be retransmitted.  Should the path in
   question be completely broken, this will then lead to an almost
   immediate new stall, and the stall/RTO cycles will then continue
   until the user timeout / R2 timer [RFC1122] for the subflow expires.

   This is solved by taking unacknowledged packets transmitted over
   subflows that are stalled because they have exhausted their
   congestion window and are now waiting for the RTO to expire, and
   scheduling retransmissions of those packets over other paths before
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   the RTO of the stalled subflow expires.  This should be done such
   that the missing packet arrives before it becomes necessary to stop
   sending data altogether because the receiver advertises a zero
   receive buffer.  Such retransmissions therefore happen as the receive
   buffer space advertised by the receiver reaches RTT * MSS for the
   path that will be used for the retransmission; presumably the path
   with the lowest RTT.  In essence, this creates a second level of fast
   retransmit that acts across subflows in addition to the normal fast
   retransmit that happens per subflow.  This mechanism is named "slow
   retransmit".

   In the case of single path TCP, scheduling retransmissions before the
   RTO expires could be problematic because this would be more
   aggressive than standard (New)Reno congestion control.  But in the
   case of multipath TCP, the retransmission can happen over one of the
   other paths, which is still progressing.

   By scheduling a retransmission faster than an RTO, there is an
   increased risk that a packet that was still working its way through
   the network is retransmitted unnecessarily.  However, the alternative
   is allowing the progress of the session to stall (on all paths),
   reducing throughput significantly.

3.4.  SACK

   When packets (belonging to different subflows) arrive out of order,
   the the receiver can’t acknowledge the receipt of the out of order
   packets using TCP’s normal cumulative acknowledgment.  However, the
   [RFC2018] (also see [RFC1072]) Selective Acknowledgment (SACK)
   mechanism is widely implemented.  SACK makes it possible for a
   receiver to indicate that three or four additional ranges of data
   were received in addition to what is acknowledged using a normal
   cumulative ACK.  When packets are sent over multiple paths and arrive
   out of order, the information in the SACK returned by the receiver
   can tell the sender how each subflow is progressing, so per-subflow
   congestion control can progress smoothly and unnecessary
   retransmissions are largely avoided.

   One-ended multipath TCP requires the use of SACK to be able to
   determine which subflows are progressing even if other subflows are
   stalled, and thus the normal TCP ACK isn’t progressing.  If the
   remote host doesn’t indicate the SACK capability during the three-way
   handshake, a multipath TCP implementation SHOULD limit itself to
   using only a single subflow and thus disabling multipath processing
   for the session in question.
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3.5.  Fairness and TCP friendliness

   One of the goals of multipath TCP is increased performance over
   regular TCP.  However, it would be harmful to realize this benefit by
   taking more than a "fair" share of the available bandwidth.  One
   choice would be to make each subflow execute normal NewReno
   congestion control on each subflow, so that each individual subflow
   competes with other TCPs on the same footing as a regular TCP
   session.  If all subflows use non-overlapping physical paths, other
   TCPs are no worse off than in the situation where the multipath TCP
   were a regular TCP sharing their path, so this could be considered
   fair even though the multipath TCP increases its bandwidth in direct
   relationship to the number of subflows used.  Note that in this case,
   although multipath TCP sends at the same rate as regular TCP on a
   given path, resource pooling [wischik08pooling] benefits are still
   realized because a given transmission completes faster so it uses up
   resources for a shorter amount of time.

   But if several logical paths share a physical path, multipath TCP
   takes a larger share of the bandwidth on that path.  This would only
   be acceptable as fair for a very small number of subflows.  The other
   end of the spectrum would be for multipath TCP to conform to exactly
   the same congestion window increase and decrease envelope that a
   regular TCP exhibits, being no more aggressive than a regular single
   path TCP session.  At this point in time we will assume that fairness
   is a tunable factor of the regular NewReno AIMD envelope.  A simple
   way to limit the amount of additional aggressiveness exhibited by
   multipath TCP is a limit on the number of subflows.  Until more
   analysis has been performed and/or there is more experience with
   multipath TCP, a multipath TCP implementation SHOULD limit itself to
   using no more than 3 subflows concurrently.

4.  Path selection

   Note that in order to gain multipath benefits, the multipath TCP
   layer must be able to determine the logical path followed by each
   packet so it can measure path properties and perform per-path
   congestion control.  In order to limit the number of packets flowing
   over each path to the amount allowed by the per path congestion
   window, the multipath TCP layer must be able to specify over which
   path a given packet is transmitted.

   The situation where routers distribute packets over different paths
   based on their own criteria makes it impossible for hosts to send
   less traffic over congested paths and more traffic over uncongested
   paths and is therefore incompatible with multipath TCP.  When routers
   distribute traffic belonging to the same flow (or, in the case of
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   multipath TCP: subflow) over different paths this will also cause
   reordering and the associated performance impact on TCP.

4.1.  The multipath IP layer

   The one-ended multipath TCP is logically layered on a multipath IP
   layer, which is able to to deliver packets to the same destination
   address through one or more logical paths, where the set of n logical
   paths share between one and m physical paths.  In some cases, the
   multipath IP layer will be able to determine that a logical path
   isn’t working, or maps to the same physical path as a previous
   logical path.  For example, if the multipath TCP indicates that a
   packet should be sent over the third path, and the multipath IP is
   set up to use different next hop addresses for path selection, but
   only two next hop addresses are available, the multipath IP layer can
   provide feedback to the multipath TCP layer.  In other cases, packets
   simply won’t be delivered, or will be delivered through the same
   physical path used by other logical paths.  This may for instance
   happen when multipath TCP selects path 1 and multipath IP puts a path
   selector with value "1" in the packet, but there are no multipath
   capable routers between the source and destination, so all packets,
   regardless of the presence and/or value of a path selector, are
   routed over the same physical path.

   It is up to the multipath TCP layer to handle each of these
   situations.

   For the purposes of this multipath TCP specification, the simplest
   possible interface to the multipath IP layer is assumed.  When TCP
   segments traveling down the stack from the TCP layer to the IP layer
   aren’t accompanied by a path selector value, or the path selector
   value is zero, the IP layer delivers packets in the same way as for
   unmodified TCP and other existing transport protocols, i.e., over the
   default path.  Segments may also be accompanied by a path selector
   value higher than zero, which indicates the desired path.  If the
   desired logical path is available, or may be available, the multipath
   IP layer attempts to deliver the packet using that logical path.  If
   the desired logical path is known to be unavailable, the multipath IP
   layer drops the segment.

   It is assumed that paths as seen by the multipath IP layer are mapped
   to logical paths with increasing numbers roughly ordered in order of
   decreasing assumed performance or availability.  I.e., if path x
   doesn’t work or has low performance, that doesn’t necessarily mean
   that path x+1 doesn’t work or has low performance, but if if paths x,
   x+1 and x+2 don’t work or have low performance, then it’s highly
   likely that paths x+3 and beyond also don’t work or have even lower
   performance.  Routers may have good next hop or even intra-domain
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   link weight information and link congestion information, but they
   generally don’t have information about the end-to-end path
   properties, so the ordering of paths from high to low availability/
   performance must be considered little more than a hint.

   The multipath IP layer may be implemented through a variety of
   mechanisms, including but not limited to:

   o  Using different outgoing interfaces on the host

   o  Directing packets towards different next hop routers

   o  Integration with shim6 [I-D.ietf-shim6-proto] so that packets can
      use different address pairs

   o  Manipulation of fields used in ECMP [RFC2992] (i.e., a different
      flow label)

   o  Type of service routing (such as [RFC4915])

   o  Different lower layer encapsulation, such as MPLS

   o  Tunneling through overlays

   o  Source routing

   o  An explicit path selector field in packets, acted upon by routers

   At this time, no choice is made between these different mechanisms.

4.2.  The path indication option

   Note that several of the fields discussed below are defined with
   future developments in mind, they are not necessarily immediately
   useful.

   In order to allow for accurate RTT measurements and to inform the IP
   layer of the selected path, a TCP option indicating the desired path
   is included in all segments that don’t use the default path.  The
   format of this option is as follows:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   KIND=TBA    |  LENGTH = 3   |D|  MP |R|  SP |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The length is 3.

   D is the "discard eligibility" flag (1 bit).  It is similar, but not

van Beijnum             Expires November 7, 2009               [Page 10]



Internet-Draft           One-ended multipath TCP                May 2009

   identical, to the frame relay discard eligibility bit or the ATM cell
   loss priority bit.  Set to zero, no special behavior is requested.
   Set to one, this indicates that loss of the packet will be
   inconsequential.  This allows routers to drop packets with D=1 more
   readily than other packets under congested conditions, and also to
   completely block packets with D=1 on links that are considered long-
   term congested or expensive, even if there is no momentary
   congestion.

   Setting the D bit to 1 for some subflows (presumably, ones with a
   performance lower than the best performing subflow) allows multipath
   TCP to give way to regular TCP and other single path traffic on
   congested or expensive paths.  As long as the multipath TCP sets D to
   0 on the subflow with the best performance, multipath TCP should
   still perform better than regular TCP, but the reduction in bandwidth
   use on the other paths helps achieve resource pooling benefits.

   MP is a is a path selector that may be interpreted by multiple
   routers along the way (3 bits).  A value of 0 is the default path
   that is also taken by packets that don’t contain a multipath option.
   Multipath TCP aware routers should take this value into account when
   performing ECMP [RFC2992].  Packets with any value for MP MUST be
   forwarded, even if the number of available paths is smaller than the
   value in MP.

   R (1 bit) is reserved for future use.  MUST be set to zero on
   transmission and ignored on reception.

   SP is a path selector that is interpreted only once by the local TCP
   stack or a router close to the sender (3 bits).  A value of 0 is the
   default path that is also taken by packets that don’t contain a
   multipath option.  If the value in SP points to a path that isn’t
   available, the packet SHOULD be silently dropped.  This behavior, as
   opposed to selecting an alternate path out of the available ones,
   helps avoid the use of duplicate paths.  As such, a router may only
   interpret SP rather than MP when it is known that the router is the
   only one acting on SP.  All other routers may only act on MP.

   It is not expected that routers will make routing decisions directly
   based on the path indication option, as this option occurs deep
   inside the packet and not in a fixed place.  However, a multipath IP
   layer or a middlebox may write a path selection value into a field in
   packets that is easily accessible to routers.  But conceptually, the
   routers act upon the values in SP and MP.

   The initial packets for each TCP session MUST use D, MP and SP values
   of zero.  If D, MP and SP are all zero, then the path selector option
   isn’t included in the packet.  This makes sure that single path
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   operation remains possible even if packets with the path selector
   option are filtered in the network or rejected by the receiver.  The
   packets that are part of the TCP three-way handshake SHOULD be sent
   over the default path, in which case they don’t contain the path
   selector option; hence the ability to do multipath TCP isn’t
   indicated to the correspondent at the beginning of the session as is
   usual for most other TCP extensions.

4.3.  Timestamp integration option

   As an optimization, hosts MAY borrow the four bits used by the path
   selector option from the timestamp option, and thus save one byte of
   option space, which means the path selector option can replace the
   padding necessary when the timestamp option is used and not increase
   header overhead.  In that case, the combined path selector and
   timestamp options MUST appear as follows:

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   KIND=TBA    |  LENGTH = 2   |     KIND=8    |  LENGTH = 10  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |D|  MP |                 TS Value (TSval)                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       TS Echo Reply (TSecr)                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   D and MP are the same as in the three-byte form of the path selector
   option.  R and SP do not occur in this form of the path selector
   option and are assumed to be zero.

   TSval is the locally generated timestamp.  Because the timestamp is
   reduced to 28 bits, the minimum clock frequency is increased from the
   59 nanoseconds mandated by [RFC1323] to 1 microsecond so the
   timestamp wraps in no less than 255 seconds.

   TSecr is the timestamp echoed back to the other side (32 bits).

   All hosts conforming to this specification MUST be able to recognize
   the integrated path selector and timestamp options, but they are not
   required to generate them.

4.4.  Path for retransmissions

   A multipath TCP implementation MUST be capable of scheduling
   retransmissions over a path different from the path used to transmit
   the packet originally.  This includes packets subject to fast
   retransmit.
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4.5.  ECN

   Explicit Congestion Notification works by routers setting a
   congestion indication in the IP header of packets rather than
   dropping those packets when they experience congestion.  The receiver
   echos this information back to the sender which then performs
   congestion control in exactly the same way as if a packet was lost.
   The ECN specification ([RFC3168]) is such that the receiver sets the
   ECN-Echo (ECE) flag in the TCP header for all subsequent packets that
   it sends back until the sender sets the Congestion Window Reduced
   (CWR) flag.  As the ECE flag is set in multiple ACKs, there is no
   obvious way to correlate the ECN indication in an ACK with a specific
   packet that experienced congestion, and subsequently, the path that
   is congested.

   At this time, a multipath TCP conforming to this specification SHOULD
   NOT use ECN.  ECN MAY be negotiated, but when more than a single path
   is used at a given time, packets SHOULD be sent with the ECN field
   set to Not-ECN (00), and incoming non-zero ECE flags SHOULD NOT be
   acted upon with regard to congestion control.

4.6.  Path MTU discovery

   Path MTU discovery [RFC1191] is performed for TCP by having TCP
   reduce its packet sizes whenever "packet too big but DF set" ICMP
   messages are received.  As the name suggests, the path MTU is
   dependent on the path used, so multipath TCP must maintain MTU
   information for each path, and adjust this information for each path
   individually based on the too big messages that it receives.

   The time between probing with a larger than previously discovered MTU
   must either be randomized or explicitly coordinated to avoid probing
   larger MTUs for multiple subflows at the same time, as probing larger
   MTUs is likely to lead to a lost packet, and having losses on
   multiple paths at the same time would be suboptimal.  For instance,
   rather than probe every t, in the case of 2 paths, after t*0.5 the
   first path is probed, after t the second and after t*1.5 the first is
   probed again.

   Both the IPv4 and IPv6 versions of ICMP return enough of the original
   packet in a "packet too big" message to be able to recover the
   sequence number from the original packet, which makes it possible to
   correlate the too big message with the packet that caused it, and
   thus the path used to transmit the packet.
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5.  Flow control and buffer sizes

   In order to accommodate the increased number of packets in flight,
   the send buffer must be increased in direct relationship with the
   number of paths being used.  Alternatively, the number of paths used
   concurrently should be limited to send buffer / avgRTT.

   Although under normal operation, the receive buffer doesn’t fill up,
   there are two reasons the receive buffer must be the same size as the
   send buffer: it must be able to accommodate a round trip time plus
   two segments worth of data during fast retransmit, and the advertised
   receive window limits the amount of data the sender will transmit
   before waiting for acknowledgments.  So in practice, the receive
   buffer limits the maximum size of the send buffer, and therefore, the
   number of paths that can be supported concurrently.

   There is no simple rule of thumb to determine the number of paths
   that should be used, as the maximum number of paths that the receive
   window can accommodate depends both on the maximum receive window
   advertised by the receiver and by the RTTs on the paths.

6.  Handling of RSTs

   If an RST is received after enabling a new path, this could be a
   reaction to the presence of an unknown option.  So the optimal
   situation would be for an RST to reset just the path used to send the
   packet that generated the RST, not the entire session.  Only when the
   last path or the default path (on which packets don’t include special
   options) receives an RST, the entire session should be reset.

7.  Middlebox considerations

   NATs are designed to be transparent to TCP.  Because one-ended
   multipath TCP conforms to normal TCP semantics on the wire, multipath
   TCP should in principle also be compatible with NAT.  However, if
   different paths are served by different NATs that apply different
   translations, the receiver won’t be able to determine that the
   different subflows through the different paths belong to the same TCP
   session.  So for NAT to work, the translation must either happen in a
   location that all paths flow through, or the different NATs on the
   different paths must act as a single, distributed NAT and apply the
   same translation to the different subflows.

   Middleboxes that only see traffic flowing over a subset of the paths
   used will see large numbers of gaps in the sequence number space.
   They may also not observe only a partial three-way handshake, or not
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   observe any ACKs.  As such, like with NATs, middleboxes that enforce
   conformance to known TCP behavior, must be placed such that they
   observe all subflows.  For middleboxes that just check whether
   packets fall inside the TCP window, it may be sufficient for
   multipath TCP senders to make sure that all paths see at least one
   packet per window.  Middleboxes that enforce sequence number
   integrity will almost certainly also block TCP packets for which they
   didn’t observe the three way handshake.  A possible way to
   accommodate that behavior would be to send copies of all session
   establishment and tear down packets over all paths that the sender
   may use.  However, this strategy is still likely to fail unless the
   receiver does the same so the middleboxes may observe the signaling
   packets flowing in both directions.

   It’s also possible that middleboxes (or perhaps hosts themselves)
   reject packets with the path indicator TCP option.  Since packets
   flowing over the default path don’t carry the path indicato option,
   these packets should always be allowed through, so single path
   operation is always possible.  When a multipath TCP sender starts to
   send packets over alternative paths, those packets won’t make it to
   the receiver because they contain the path indicator option.  The
   result is that a new subflow, which would use a congestion window of
   two maximum segment sizes, would send two packets and then
   experiences a retransmission timeout.  Slow retransmit makes sure the
   packets are transmitted before the session stalls, so the impact of
   the lost packets is negligible.

8.  Security considerations

   None at this time.

9.  IANA considerations

   IANA is requested to provide a TCP option kind number for the path
   indication option.
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Appendix A.  Document and discussion information

   The latest version of this document will always be available at
   http://www.muada.com/drafts/.  Please direct questions and comments
   to the multipathtcp@ietf.org mailinglist or directly to the author.

Appendix B.  An implementation strategy

   In order to perform per-path congestion control, all of the ACK-based
   events that trigger congestion control responses as well as all the
   variables used by the congestion control algorightms must be
   recreated in the multipath situation.  These are the triggers and
   variables for the four mechanisms in RFC 2581.

   1.  the path MTU (page 4)

   2.  the arrival of an ACK that acknowledges new data (page 4)

   3.  the arrival of a non-duplicate ACK (page 4) or the sum of new
       data acknowledged (page 5)

   4.  triggering of the retransmission timer (page 5)

   5.  the flightsize or number of bytes sent but not acknowledged (page
       5)

   6.  the retransmission of a segment (page 5)

   7.  the arrival of a third or subsequent duplicate ACK (page 6, page
       7)
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   8.  whether a retransmission timeout period has elapsed since the
       last reception of an ACK (page 7)

   1, 4, 6 and 8 are maintained session-wide.

   We recreate these events and variables based on SACK information in
   the one-sequence number multipath TCP case as follows.

   We keep track of every packet sent.  (Alternatively: multi-packet
   contiguous blocks of data transmitted over the same path.)  When an
   ACK comes in, we first remove the stored information about packets/
   data blocks that are cumulatively ACKed, noting how much data was
   ACKed for each path that the packets were sent over.  Then we do the
   same for all the SACK blocks in the ACK.  Because we remove the
   information about (S)ACKed data and you can remove something just
   once, we don’t have to keep track of previous SACKs like the current
   BSD implementation does.

   The only slightly tricky part is emulating duplicate ACKs.  This may
   not even be really necessary, as the SACKs give us better information
   to base fast retransmit on, but that’s something for another day.
   What happens in the pseudo code is that when traversing the list of
   sent packets (this happens in order of seqnum), we note the path that
   packets that aren’t SACKed are sent over.  When we’re done processing
   SACK data and it turns out that for a path there are one or more
   packets that we skipped over when processing SACK data and there was
   also data SACKed after a skipped packet, there was a lost (or
   reordered) packet on this path.  When the amount of "duplicate ACKed"
   data grows beyond two segment sizes, we’ve reached the equivalent of
   three duplicate ACKs so we trigger fast retransmit (7).

   We update the congestion window (2 and 3) when there was data
   (S)ACKed for a path.  ACKs that don’t acknowledge any data for a path
   aren’t relevant because we don’t need them to trigger fast retransmit
   and we assume that they’re sent to (S)ACK data for other paths,
   anyway.  (Or they could be window updates.)

   We maintain the flightsize (5) by simply adding data bytes as packets
   are transmitted and subtracting when they’re (S)ACKed.  Because we
   have explicit SACKs, we don’t need to guess based on duplicate ACKs.
   The flightsize is also adjusted when we perform fast retransmit or a
   regular retransmission over a path other than which was used for the
   original packet.  In addition, we explicitly mark some packets to
   trigger once-per-RTT actions when they’re ACKed.

   Pseudo code for the above:
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   // initializing data structures is left as an exercise for the
   // reader

   // transmitting packets
   // assume we’ve selected a path to transmit over

   path.flightsize = path.flightsize + packet.datasize
   packet.path = path
   packet.status.acked = false
   // set up state to remember to do per RTT stuff when packet is
   // ACKed
   if path.do_per_rtt_next_packet == true
     path.per_rtt_seqnum = packet.seqnum.first
     packet.per_rtt = true
     path.do_per_rtt_next_packet = false
   else
     packet.status.per_rtt = false
   // don’t set ECN on outgoing packets for now, can add logic
   // for deciding which packets to ECN enable later
   packet.ecn.sent = 0
   // add to linked list of sent packets (to handle retrans-
   // missions, linked list must maintain seqnum order, not FIFO
   // or LIFO)
   llpush(packet)

   // receiving (S)ACKs

   // normal flow-wide flow control actions based on cumACK
   // also happen (elsewhere)

   // handle ECN, must detect transitions rather than
   // depend on actual value
   if packet.ecnecho == true
     if ecn.previous == true
       ecn.current = false
     else
       ecn.current = true
       ecn.previous = true
   else
     ecn.previous = false

   // initialize some stuff before we handle the ACK
   for each path
     path.do_per_rtt = false
     path.ackedbytes = 0
     path.unacked.sure = 0
     path.unacked.maybe = 0
     path.ecn.received = false
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   // remove cumulatively ACKed packets
   llwalk_init
   packet = llwalk_next
   while packet.seqnum.first < ack.cumulative
     // ECN, we only act if we enabled ECN when we sent the packet
     if ecn.current & packet.ecn.sent <> 0
       path.ecn.received = true
     // if part of a packet is ACKed, we need some trickery
     if packet.seqnum.last_plus_one > ack.cumulative
       path.ackedbytes += ack.cumulative - packet.seqnum.first
       packet.seqnum.first = ack.cumulative
     else
       path.ackedbytes = path.ackedbytes + packet.datasize
       if packet.per_rtt & packet.seqnum.first == path.per_rtt_seqnum
         path.do_per_rtt = true
       llremove(packet)
     packet = llwalk_next

   // now we handle the SACKs (assume exactly one SACKblock for
   // simplicity) we continue walking the linked list, no need to
   // restart
   while packet.seqnum.first < ack.sack.last_plus_one
     if packet.seqnum.last_plus_one < ack.sack.first
       // these packets overlap with the SACK block
       // for simplicity, assume packets are always completely
       // SACKed in reality we need to split a packet if only the
       // middle is SACKed ECN, we only act if we enabled ECN when
       // we sent the packet
       if ecn.current & packet.ecn.sent <> 0
         path.ecn.received = true
       path.ackedbytes = path.ackedbytes + packet.datasize
       if packet.per_rtt & packet.seqnum.first == path.per_rtt_seqnum
         path.do_per_rtt = true
       // add potentially unacked bytes to for sure unacked bytes
       // because we now know we had a SACK hole if any
       // unacked maybe bytes
       path.unacked.sure = path.unacked.sure + path.unacked.maybe
       path.unacked.maybe = 0
       // remove packet from the list
       llremove(packet)
     else
       // note how many bytes we skipped unSACKed
       // if later data is SACKed, that’s our version of a dup ACK
       path.unacked.maybe = path.unacked.maybe + packet.datasize
     packet = llwalk_next

   // done processing, now tally up the the results
   foreach path
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     // update flightsize (item 5 in CC events/variables list)
     path.flightsize = path.flightsize - path.ackedbytes
     // if any data was ACKed
     if path.ackedbytes <> 0
       // some stuff was ACKed for this path
       if path.unacked.sure > 2 * path.mss
         // more than 2 * MSS worth of data in SACK hole = fast
         // retransmit execute fast retransmit (item 7 in CC
         // events/variables list) need to handle flightsize in
         // some way here ignore ECN because we already have a loss
         // send back ECN window update indication, though
       else
         // SACKs were cumulative for this path
         // execute cwnd update (items 2 and 3 in CC events/
         // variables list)
         // ECN must be taken into account here
         // and send back ECN window update indication
       if path.do_per_rtt
         // execute per RTT actions
         // indicate that this should be set for next packet sent
         path.do_per_rtt_next_packet == true

   Note that the pseudo-code doesn’t cover all the mechanisms explained
   earlier.  Also, ECN is handled here because it’s not too difficult to
   do.  The hard part is deciding which packets to enable ECN for.
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