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1. Introduction

A Sensor Network is a well-studied simplified abstraction of a radio-

communication network where nodes are deployed at random over a large

area in order to monitor some physical event. Sensor Networks is a very

active research area, not only due to the potential applications of such a

technology, but also because well-known techniques used in networks can-

not be straightforwardly implemented in sensor nodes, due to harsh resource

limitations.

Sensor Networks are expected to be used in remote or hostile environ-

ments. Hence, random deployment of nodes is frequently assumed. Although

the density of nodes must be big enough to achieve connectivity, precise loca-

tion of specific nodes cannot be guaranteed in such scenario. Consequently,

the topology of the network is usually assumed to be unknown, except per-

haps for bounds on the total number of nodes and the maximum number of

neighbors of any node. In addition, given that in Sensor Networks only one

channel of communication is assumed to be available, protocols must deal

with collision of transmissions.

Most of the Sensor Network protocols use randomness to deal with colli-

sions and lack of topology information. Randomized protocols are fast and

resilient to failures, but frequently rely on redundant transmissions. Given

that the most restrictive resource in a Sensor Network is energy and that

the dominating factor in energy consumption is the radio communication,

deterministic algorithms may yield energy-efficient solutions. In this paper,
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deterministic communication primitives are studied under the harsh restric-

tions of sensor nodes.

1.1. Model

In this work, we assume a Sensor Network where a total of n nodes are

deployed over an area of interest. We model the potential connectivity of

nodes as a Geometric Graph where n nodes are deployed in R
2, and a pair

of nodes is connected by an undirected edge if and only if they are at an

Euclidean distance of at most a parameter r. It is important to stress that

this topology models the potential connectivity of nodes. However, upon

deployment, two neighboring nodes still have to establish a communication

link in order to be neighbors in terms of the communication network. The

geometric graph model implies a circular-range assumption, which in practice

may not be true. However, whenever this is the case, the minimum radius

may be taken without extra asymptotic cost.

As customary in Sensor Networks, nodes are assumed to be deployed

densely enough to guarantee connectivity and coverage. For adaptive proto-

cols, we assume that nodes can adjust the transmission power among different

levels. By adjusting the power of transmission a node is able to effectively

adjust its radius of connectivity. Thus, we also assume that connectivity

is guaranteed even while using the smallest power of transmission, which

introduces only a constant factor overhead.

Although random, the deployment of sensor nodes is not the result of
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an uncontrolled experiment where any outcome has a positive probability.

Hence, we assume that the maximum degree, i.e., the maximum number of

nodes located within a radius of r of any node, is a known value k − 1 < n.

Each node knows only the total size of the network n, its unique identifier

in {1, . . . , n} and the maximum degree k − 1. In order to specify the results

obtained to the level of constants, we further assume that k ≥ 6. Were not

this the case, the same asymptotic results can be proved using the prime

number theorem [17].

In addition to topology and connectivity models, an appropriate model

of the constraints under which sensor nodes operate has to be defined, in

order to properly design and analyze algorithms. As a general framework,

we use the Weak Sensor Model, elucidated in [12], including the assump-

tions described below for completeness. For adaptive protocols, memory size

limitations and/or adversarial node-activation schedule will be relaxed to

improve in time efficiency.

• Time is assumed to be slotted and all nodes have the same clock fre-

quency, but no global synchronizing mechanism is available.

• It is assumed the presence of an adversary that chooses the time instant

at which each node is powered up. Indistinctively, we say that nodes

wake-up, start-up, or are activated adversarially.

• Low-information channel contention: The communication among neigh-

boring nodes is through broadcast on a shared channel of communica-
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tion unique throughout the network, where a node receives a message

only if exactly one of its neighbors transmits. If more than one message

is sent to a node at the same time, a collision occurs and the node re-

ceives the messages garbled. Furthermore, no collision detection mech-

anism is available and sensors nodes cannot receive and transmit in

the same time slot. Therefore a node can not distinguish between a

collision and no transmission in its neighborhood. Thus, the channel is

assumed to have only two states: transmission and silence/collision.

• It is assumed that sensor nodes can adjust their power of transmis-

sion but only to a constant number of levels, always limited to cover a

short range much smaller than 1, and with only one channel of com-

munication available. By adjusting its power of transmission a node

is able to effectively adjust its radius of connectivity. Furthermore, we

assume that only two levels of power of transmission are available, the

maximum power resulting in a radius r of communication, and a re-

duced power of transmission that results in the biggest feasible radius

smaller or equal than r/2, the precise value depending on the physical

constraints. In the rest of the paper, we will assume a precise value of

r/2 for simplicity.

• The memory size of each sensor node is bounded by O(1) words of

O(logn)2 bits, unless otherwise stated.

2Througout this paper, log means log
2

unless otherwise stated.
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• No position information or distance estimation capabilities are avail-

able.

The Weak Sensor Model includes also limits on life cycle due to energy con-

straints and reliability. We specify how do we model these restrictions in

this work after defining the problem and the efficiency metrics studied in

Section 1.2.

In order to highlight the relevance of this work, we compare our model

with previous models of node constraints. Unless otherwise stated, we model

node restrictions as in the Weak Sensor Model [12]. Bar-Yehuda et al. [2]

used a formal model of Radio Network, which additionally includes topology

assumptions, that specifies many of the node restrictions here, including

limits on contention resolution, but they make no mention of computational

limits such as small memory. Later on, more restrictions have been added

to the model in various papers, such as in the unstructured Radio Network

model of Kuhn et al. [21]. Notice that the unstructured Radio Network

model does not include all the restrictions of our model. For instance, that

model does not include limits on the number of levels of transmission power

and lack of position information. But, more importantly, the unstructured

Radio Network model does not include limits on memory size, a fundamental

restriction [23].

In a time slot, an active node can be in one of two states, namely trans-

mission or reception. We denote a temporal sequence of states of a node as

a schedule of transmissions, or simply a schedule when the context is clear.
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1.2. Problem Definition

An expected application of Sensor Networks is to continuously monitor

some physical phenomena. Hence, in this paper, the problem we address is to

guarantee that each active node can communicate with all of its neighboring

active nodes infinitely many times. The actual use of such a capability will

depend of course on the availability of application messages to be delivered.

Our goal is to give guarantees on the energy cost and the time delay of

the communication only, leaving aside the overhead due to queuing or other

factors.

In Radio Networks, messages are successfully delivered by means of non-

colliding transmissions. Non-colliding transmissions in single-hop Radio Net-

works are clearly defined: the number of transmitters must be exactly one.

However, in a multi-hop scenario such as Sensor Networks the same transmis-

sion may be correctly received by some nodes and collide with other trans-

missions at other nodes. Thus, a more precise definition is necessary. If in a

given time slot exactly one of the adjacent neighbors of a node x transmits,

and x itself is receiving, we say that there was a clear reception at x in that

time slot. Whereas, in the case where a node transmits a message in a given

time slot, and no other node within two hops of the transmitter transmits in

the same time slot, we say that there was a clear transmission. Notice that

when a clear transmission is produced by a node, all its neighbors clearly

receive at the same time. Of course, in a single-hop network both problems

are identical.
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In this paper, our goal is to guarantee that each node communicates with

all of its at most k − 1 neighbors. Hence, a closely-related communication

primitive known as selection is relevant for our purposes. In the selection

problem, each of k active nodes of a single-hop Radio Network hold a different

message that has to be delivered to all the active nodes. Once its message

is successfully transmitted, a node becomes inactive. Given that we want

to guarantee communication forever, in this paper, we give upper and lower

bounds for generalizations of the selection problem that we define as follows.

Definition 1. Given a single-hop Radio Network of n nodes where k of

them are activated possibly at different times, in order to solve the Recurring

Selection problem every active node must clearly transmit infinitely many

times.

For multihop networks, based on the distinction between clear reception

and transmission, we define the following two problems.

Definition 2. Given a Sensor Network of n nodes and maximum degree

k − 1, where upon activation, possibly at different times, nodes stay active

forever, in order to solve the Recurring Reception problem every active node

must clearly receive from all of its active neighboring nodes infinitely many

times.

Definition 3. Given a Sensor Network of n nodes and maximum degree

k − 1, where upon activation, possibly at different times, nodes stay active
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forever, in order to solve the Recurring Transmission problem every active

node must clearly transmit to all of its active neighboring nodes infinitely

many times.

Given that protocols for such problems run forever, we need to establish

a metric to evaluate energy cost and time efficiency. Let Ri
u(v), i > 1, be

the number of transmissions of u between the (i − 1)th and the ith clear

receptions of application messages from u at v, and Ru(v) = maxi R
i
u(v). In

order to measure time we denote ∆Ri
u(v) the time (number of time slots)

that are between the (i − 1)th and the ith clear receptions from u at v, and

∆Ru(v) = maxi ∆Ri
u(v). Similarly, Let T i(u) be the number of transmissions

from u between the (i − 1)th and the ith clear transmissions from u, and

T (u) = maxi T
i(u); and let ∆T i(u) be the time between the (i−1)th and the

ith clear transmission from u, and ∆T (u) = maxi ∆T i(u).

We define the message complexity of a protocol for Recurring Reception

as max(u,v) Ru(v), over all pairs (u, v) of adjacent nodes; and for Recurring

Transmission as maxu T (u) over all nodes u. We define the delay of a protocol

for Recurring Reception as max(u,v) ∆Ru(v), over all pairs (u, v) of adjacent

nodes; and for Recurring Transmission as maxu ∆T (u) over all nodes u. Any

of these definitions is valid for the Recurring Selection problem since clear

transmissions and clear receptions are the same event in a single-hop network.

Unless otherwise stated, throughout the paper we assume the presence

of an adversary that gets to choose the time step of activation of each node.

Additionally, for Recurring Selection, the adversary gets to choose which are
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the active nodes; and for Recurring Reception and Recurring Transmission,

given a topology where each node has at most k − 1 adjacent nodes, the

adversary gets to choose which is the identity of each node. In other words,

the adversary gets to choose which of the n schedules is assigned to each

node.

Constraints such as limited life cycle and unreliability imply that nodes

may power on and off many times. Were such a behaviour unrestricted and

controlled by an unbounded adversary, the delay of any protocol could be

infinite. Therefore, we assume that active nodes that become inactive are not

activated back. The study of the problem under other models of adversarial

failures is left for future work.

1.3. Related Work

In [1], Alon, Bar-Noy, Linial and Peleg gave a deterministic distributed

protocol to simulate the message passing model in radio networks. Using

this technique, each node receives a transmission of all its neighbors af-

ter O(k2 log2 n/ log(k log n)) steps. Unfortunately, simultaneous activation

of nodes and ω(log n) memory size is required. In the same paper, lower

bounds for this problem are also proved by showing bipartite graphs that

require Ω(k log k) rounds. Bipartite graphs with maximum degree ω(1) are

not embeddable in geometric graphs therefore these bounds do not apply to

our setting.

The question of how to diseminate information in Radio Networks has
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led to different well-studied important problems such as Broadcast [2, 22] or

Gossiping [24, 4]. However, deterministic solutions for these problems [8, 6,

10, 5] include assumptions such as simultaneous startup or the availability

of a global clock, which are not feasible in Sensor Networks.

The selection problem previously defined was studied [20] in static and

dynamic versions. In static selection all nodes are assumed to start simul-

taneously, although the choice of which are the active nodes is adversarial.

Instead, in the dynamic version, the activation schedule is also adversarial.

For static selection, Komlos and Greenberg showed in [19] a non-constructive

upper bound of O(k log(n/k)) to achieve one successful transmission. More

recently, Clementi, Monti, and Silvestri showed for this problem in [9] a tight

lower bound of Ω(k log(n/k)) using intersection-free families. For k distinct

successful transmissions, Kowalski presented in [20] an algorithm that uses

(2ℓ−1, 2ℓ, n)-selectors for each ℓ. By combining this algorithm and the exis-

tence upper bound of [3] a O(k log(n/k)) is obtained. Using Indyk’s construc-

tive selector, a O(k polylog n) is also proved. These results take advantage

of the fact that in the selection problem nodes turn off upon successful trans-

mission. For dynamic selection, Chrobak, Ga̧sieniec and Kowalski [7] proved

the existence of O(k2 log n) for dynamic 1-selection. Kowalski [20] proved

O(k2 log n) and claimed Ω(k2/ log k) both by using the probabilistic method,

and O(k2 polylog n) using Indyk’s selector.

A related line of work from combinatorics is (k, n)-selective families. Con-

sider the subset of nodes that transmit in each time slot. A family R of sub-
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sets of {1, . . . , n} is (k, n)-selective, for a positive integer k, if for any subset

Z of {1, . . . , n} such that |Z| ≤ k there is a set S ∈ R such that |S ∩Z| = 1.

In terms of Radio Networks, a set of n sequences of time slots where a node

transmits or receives is (k, n)-selective if for any subset Z of k nodes, there

exists a time slot in which exactly one node in the subset transmits. In [18]

Indyk gave a constructive proof of the existence of (k, n)-selective families of

size O(k polylog n). A natural generalization of selective families follows.

Definition 4. [3] Given integers k, m, and n, with 1 ≤ m ≤ k ≤ n, we say

that a boolean matrix M with t rows and n columns is a (k, m, n)-selector

if any submatrix of M obtained by choosing k out of n arbitrary columns of

M contains at least m distinct rows of the identity matrix Ik . The integer

t is the size of the (k, m, n)-selector.

In [11] Dyachkov and Rykov showed that (k, m, n)-selectors must have

size Ω(min{n, k2 logk n}) when m = k. Recently in [3], it was shown that

(k, k, n)-selectors must have size t ≥ (k − 1)2 log n/(4 log(k − 1) + O(1))

using superimposed codes. In the same paper, it was shown the existence of

(k, k, n)-selectors of size O(k2 ln(n/k)).

Regarding randomized protocols, an optimal O(D+k)-algorithm for gos-

siping in a Sensor Network of diameter D was presented in [14]. The algo-

rithm includes a preprocessing phase that allows to achieve global synchro-

nism and to implement a collision detection mechanism. After that, nodes

transmit their message to all neighboring nodes within O(k + log2 n log k)
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steps with high probabiliy. The expected message complexity of such phase

is O(logn+ log2 k). A non-adaptive randomized algorithm that achieves one

clear transmission for each node w.h.p. in O(k log n) steps was shown in [13].

The expected message complexity of such a protocol is O(logn). In the same

paper it was shown that such a running time is optimal for fair protocols,

i.e., protocols where all nodes are assumed to use the same probability of

transmission in the same time slot.

1.4. Our Results

Our objective is to find deterministic algorithms that minimize the mes-

sage complexity and, among those, algorithms that attempt to minimize the

delay. As in [19], we say that a protocol is oblivious if the sequence of trans-

missions of a node does not depend on the messages received. Otherwise,

we call the protocol adaptive. We study deterministic oblivious and adap-

tive protocols for Recurring Selection, Recurring Reception and Recurring

Transmission. These problems are particularly difficult due to the arbitrary

activation schedule of nodes. In fact, the study of oblivious protocols is par-

ticularly relevant under adversarial activation of nodes, given their simplicity

as compared with adaptive protocols where usually different phases need to

be synchronized. If we were able to weaken the adversary assuming that all

nodes are activated simultaneously, as it is customary in the more general

Radio Network model, the following well-known oblivious algorithm would

solve these problems optimally.
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For each node i,

node i transmits in time slot t = i + jn, ∀j ∈ N ∪ {0}.

The message complexity for this algorithm is 1 which of course is optimal.

To see why the delay of n is optimal for a protocol with message complexity

1, assume that there is an algorithm with smaller delay. Then, there are at

least two nodes that transmit in the same time slot. If these nodes are placed

within one-hop their transmissions will collide, hence increasing the message

complexity.

We first study oblivious protocols. We show that the message complexity

of any oblivious deterministic protocol for these problems is at least k. Then,

we present a message-complexity optimal oblivious deterministic protocol,

which we call Primed Selection, with delay at most k(n + k)(ln(n + k) +

ln ln(n+k)). We then evaluate the time efficiency of such a protocol studying

lower bounds for these problems. Since a lower bound for Recurring Selection

is also a lower bound for Recurring Reception and Recurring Transmission,

we concentrate on the first problem. By giving a mapping between (m, k, n)-

selectors and Recurring Selection, we establish that Ω(k2 log n/ log k) is a

lower bound for the delay of any protocol that solves Recurring Selection.

Maintaining the optimal message complexity may be a good approach to

improve this bound. However, the memory size limitations motivates the

study of protocols with some form of periodicity. Using a simple argument

we show that the delay of any protocol that solves Recurring Selection is in

Ω(kn), for the important class of equiperiodic protocols, i.e., protocols where
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each node transmits with a fixed frequency. Finally, we show that choosing

appropriately the periods that nodes use, for k ≤ n1/(2 log log n)− log n Primed

Selection is also optimal delay-wise for equiperiodic protocols. Given that

most of the research work in Sensor Networks assumes a logarithmic one-

hop density of nodes, Primed Selection is optimal in general for most of

the values of k and the delay is only a logarithmic factor from optimal for

arbitrary graphs.

Moving to adaptive protocols, we show how to implement a preprocess-

ing phase using Primed Selection so that the delay is reduced to O(k2 log k)

relaxing the node-memory size and to an asymptotically optimal O(k) addi-

tionally limiting the adversarial wake-up schedule.

To the best of our knowledge, no message-complexity lower bounds for

recurring communication with randomized oblivious protocols have been

proved. Nevertheless, the best algorithm known to solve Recurring Selec-

tion w.h.p. is to repeatedly transmit with probability 1/k which solves the

problem with delay O(k log n) and expected message complexity in O(logn).

Therefore, deterministic protocols outperform this randomized algorithm for

k ∈ o(log n) and for settings where the task has to be solved with probability

1.

1.5. Roadmap

Oblivious and adaptive protocols are studied in Sections 2 and 3 respec-

tively. Lower bounds are studied for message complexity in Section 2.1 and
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for the delay in Section 2.3. The Primed Selection oblivious protocol is pre-

sented and analyzed in Section 2.2. An improvement of this algorithm for

most of the values of k is shown in Section 2.4 whereas adaptive protocols

that use Primed Selection are given in Sections 3.1 and 3.2. We finish with

some acknowledgements.

2. Oblivious Protocols

2.1. Message-Complexity Lower Bound

The message complexity for Recurring Selection is at least k. To see why,

consider the adversarial node-activation schedule. For any given protocol,

the adversary may choose the time of activation of some subset of k nodes

so that, within an interval of time steps where one of them produces its

first k + 1 transmissions, only the first and the last one are successful, and

the others fail due to collision with other k − 1 transmissions. We establish

formally this observation in the following theorem.

Theorem 1. Any oblivious deterministic algorithm that solves the Recurring

Selection problem, on an n-node single-hop Radio Network where k nodes are

activated, possibly at different times, has a message complexity of at least k.

A lower bound on the message complexity of any protocol that solves Re-

curring Selection is also a lower bound for Recurring Reception and Recurring

Transmission, an observation that we formalize in the following theorem.
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Theorem 2. Given an n-node multihop Radio Network, where the max-

imum degree is k − 1 < n, and nodes are activated possibly at different

times, any oblivious deterministic algorithm that solves the Recurring Re-

ception problem, and any oblivious deterministic algorithm that solves the

Recurring Transmission problem, has a message complexity of at least k.

Proof. We concentrate on proving the claim for Recurring Reception. The

same argument can be used for Recurring Transmission. For the sake of

contradiction, assume that there exists a protocol P that solves Recurring

Reception with message complexity t < k. As argued in Section 2.2, given

that at most k nodes are activated in a one-hop Radio Network where the

Recurring Selection problem must be solved, the maximum degree on such

network is at most k−1. Thus, the protocol P can be used to solve Recurring

Selection. But this is contradiction with Theorem 1 where it was proved that

the message complexity of any Recurring Selection protocol is at least k.

2.2. A Message-Complexity-Optimal Protocol: Primed Selection

In the following sections we present our Primed Selection protocol for

deterministic communication. Such a protocol solves Recurring Selection,

Recurring Reception and Recurring Transmission with the same asymptotic

cost. For clarity, we first analyze the protocol for Recurring Selection, then

we extend the analysis to Recurring Reception and finally we argue why

Recurring Transmission is solved with the same asymptotic cost.

A static version of the Recurring Selection problem, where k nodes are
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activated simultaneously, may also be of interest. For the case k = 2, a

(k logk n)-delay protocol can be given recursively applying the following ap-

proach. First, evenly split the nodes in two subsets. Then, in the first step

one subset transmits and the other receives and in the next one the roles are

reversed. Finally, recursively apply the same process to each subset.

Recurring Selection. Recall that the choice of which are the active nodes

and the schedule of activations is adversarial. In principle, k different sched-

ules might suffice to solve the problem. However, if only s different schedules

are used, for any s < n there exists a pair of nodes with the same schedule.

Then, since the protocols are oblivious, if the adversary activates that pair at

the same time the protocol would fail. Instead, we define a set of schedules

such that each node in the network is assigned a different one.

We assume that, for each node with ID i, a prime number p(i) has been

stored in advance in its memory so that p(1) = pj < p(2) = pj+1 . . . p(n) =

pj+n−1. Where pℓ denotes the ℓ-th prime number and pj is the smallest

prime number bigger than k. Notice that the biggest prime used is p(n) <

pn+k ∈ O(n log n) by the prime number theorem [17]. Hence, its bit size

is in O(log n). Thus, this protocol works in a small-memory model. The

algorithm, which we call Primed Selection is simple to describe.

For each node i with assigned prime number p(i),

node i transmits with period p(i).

Theorem 3. Given a one-hop Radio Network with n nodes, where k nodes

are activated perhaps at different times and 6 ≤ k ≤ n, Primed Selection
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solves the Recurring Selection problem with delay at most k(n + k)(ln(n +

k)+ln ln(n+k)) and optimal message complexity per successful transmission

of k.

Proof. If no transmission collides with any other transmission we are done,

so let us assume that there are some collisions. Consider a node i whose

transmission collides with the transmission of a node j 6= i at time tc. Since

p(i) and p(j) are coprimes, the next collision among them occurs at tc +

p(i)p(j). Since p(i)p(j) > p(i)k, j does not collide with i within the next kp(i)

steps. Node i transmits at least k times within the interval (tc, tc + kp(i)].

There are at most k−1 other active nodes that can collide with i. But, due to

the same reason, they can collide with i only once in the interval [tc, tc+kp(i)].

Therefore, i transmits successfully at least once within this interval. In the

worst case i = n, so the delay is at most kp(n) < kpn+k. Given that px <

x(ln x+ln ln x) for any x ≥ 6 [26], the claimed time delay follows. Since every

node transmits successfully at least once every k transmissions, the message

complexity is k, which is optimal as shown in Theorem 1.

Recurring Reception.

Although Recurring Selection is defined for a one-hop network of n nodes

and, consequently, the maximum degree is potentially n−1, the definition of

the problem restricts the number of active nodes to k. Thus, the maximum

degree is limited to k − 1 as in Recurring Reception and Recurring Trans-

mission. Thus, a protocol for any of the latter problems can be used to solve
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Recurring Selection. The reverse is not so clear because two additional issues

appear: the restrictions of sensor nodes and the interference among one-hop

neighborhoods. As mentioned, Primed Selection works under the constraints

of the Weak Sensor Model. We show in this section that interference is also

handled.

Recall that in the Recurring Reception problem n nodes of a Sensor Net-

work are activated, possibly at different times, the maximum number of

neighbors of any node is bounded by some value k− 1 < n, and every active

node must receive from all of its active neighboring nodes periodically for-

ever. The non-active nodes do not participate in the protocol. Recall that

the choice of which are the active nodes and the schedule of activations is

adversarial.

Theorem 4. Given a Sensor Network with n nodes, where the maximum

number of nodes adjacent to any node is k − 1 and 6 ≤ k ≤ n, Primed

Selection solves the Recurring Reception problem with delay at most k(n +

k)(ln(n + k) + ln ln(n + k)) and optimal message complexity per reception of

k.

Proof. Consider any node u and the set of its adjacent nodes N(u). If u

receives the transmissions of all its neighbors without collisions we are done.

Otherwise, consider a pair of nodes i, j ∈ N(u) that transmit –hence, collide

at u– at time tc. Since p(i) and p(j) are coprimes, the next collision among

them at u occurs at time tc + p(i)p(j). Since p(i)p(j) > p(i)k, j does not

collide with i at u within the next kp(i) steps. Node i transmits at least k
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times within this interval. There are at most k−2 other nodes adjacent to u

that can collide with i at u, and of course u itself can collide with i at u. But,

due to the same reason, they can collide with i at u only once in the interval

[tc, tc + kp(i)]. Therefore, i transmits without collision at u at least once

within this interval. Since i ≤ n, the delay is at most kp(n) < kpn+k, which

is at most k(n+k)(ln(n+k)+ln ln(n+k)) as proved in [25] for n+k ≥ 6. Thus,

the claimed time delay follows. The transmission of every node is received by

some neighboring node at least once every k transmissions, which is optimal

as shown in Theorem 1.

Recurring Transmission. Observe that Primed Selection solves the Re-

curring Transmission problem also, modulo an additional factor of 7 in the

analysis, because any two-hop neighborhood has at most 7k nodes, by a sim-

ple geometric argument based on the optimality of an hexagonal packing [15].

2.3. Delay Lower Bounds

De Bonis, Ga̧sieniec and Vaccaro have shown [3] a lower bound of ((k −

m+1)⌊(m−1)/(k−m+1)⌋2/(4 log(⌊(m−1)/(k−m+1)⌋)+O(1))) log(n/(k−

m+1)) on the size of (k, m, n)-selectors when 1 ≤ m ≤ k ≤ n and k < 2m−2.

When m = k > 2, this lower bound gives a lower bound of Ω(k2 log n/ log k)

for the delay of any protocol that solves Recurring Selection. To see why,

recall Definition 4.

Now, assume that there exists a protocol P for Recurring Selection with

delay in o(k2 log n/ log k). Recall that a protocol for Recurring Selection is a
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set of schedules of transmissions. Assuming that all nodes start simultane-

ously, consider such a set of schedules. By definition of Recurring Selection,

for each choice of k schedules of P, i.e., active nodes, there exists a positive

integer t ∈ o(k2 log n/ log k) such that in every time interval of length t each

active node must achieve at least one non-colliding transmission.

Representing a transmission with a 1 and a reception with a 0, the set

of schedules can be mapped to a matrix M where each time step is a row

of M and each schedule is a column of M . The arbitrary choice of k active

nodes is equivalent to choosing k arbitrary columns of M . The time steps

where each of the k active nodes achieve non-colliding transmissions gives the

m = k distinct rows of the identity matrix Ik in M . Therefore, there exists

a (k, k, n)-selector of size in o(k2 log n/ log k) which violates the aforemen-

tioned lower bound. Thus, Ω(k2 log n/ log k) is a lower bound for the delay

of any protocol that solves Recurring Selection and, as shown before, a lower

bound for Recurring Selection is a lower bound for Recurring Reception and

Recurring Transmission.

Recall that our main goal is to minimize the message complexity. Hence,

this lower bound might be increased if we maintain the constraint of k mes-

sage complexity. Nevertheless, in order to obtain a better lower bound, we

will use the memory size constraint present in the Weak Sensor Model (and

any Radio Network for that matter) which leads to protocols with some form

of periodicity.

We define an equiperiodic protocol as a set of schedules of transmissions
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where, in each schedule, every two consecutive transmissions are separated

by the same number of time slots. A simple lower bound of Ω(kn) steps for

the delay of any equiperiodic protocol that solves Recurring Selection can be

observed as follows. n different periods are necessary otherwise two nodes

can collide forever. At least k transmissions are necessary within the delay

to achieve one reception successfully as proved in Theorem 1. Therefore,

there exist a node with delay at least kn, which we formalize in the following

theorem.

Theorem 5. Any oblivious equiperiodic protocol that solves Recurring Selec-

tion in a one-hop Radio Network with n nodes, where k of them are activated

possibly at different times, has delay at least kn.

2.4. A Delay-Optimal Equiperiodic Protocol

In Primed Selection, the period of each node is a different prime num-

ber. However, in order to achieve optimal message complexity as proved in

Theorem 1, it is enough to use a set of n periods such that, for each pair

of distinct periods u, v, it holds that v/ gcd(u, v) ≥ k and u/ gcd(u, v) ≥ k.

In this section, we define such a set of periods so that, when used as peri-

ods in Primed Selection, gives optimal delay for equiperiodic protocols when

k ≤ n1/(2 log log n) − log n.

The idea is to use a set of composite numbers each of them formed by

log log n prime factors taken from the smallest log n primes bigger than k.

More precisely, we define a compact set C as follows. Let pℓ denote the ℓ-

22



th prime number. Let pµ be a prime number such that pµ = 2 if k ≤ 2,

and pµ−1 < k ≤ pµ otherwise. Let P be the set of prime numbers P =

{pµ, pµ+1, . . . , pµ+log n−1}. Let F be a family of sets such that F = {F |(F ⊂

P ) ∧ (|F | = log log n)}. Make C a set of composite numbers such that

C = {cF |cF = (
∏

i∈F i) ∧ (F ∈ F)}. The following lemma shows that the

aforementioned property holds in a compact set.

Lemma 1. Given a positive integer k ≤ n and a compact set C defined as

above, ∀u, v ∈ C, u 6= v it holds that v/ gcd(u, v) ≥ k and u/ gcd(u, v) ≥ k.

Proof. For the sake of contradiction, assume that there exists a pair u, v ∈

C, u 6= v such that either v/ gcd(u, v) < k or u/ gcd(u, v) < k. Let U =

{u1, u2, . . . , ulog log n} and V = {v1, v2, . . . , vlog log n} be the sets of prime factors

of u and v respectively. Given that the prime factorization of a number is

unique and that |U | = |V |, there must exist ui ∈ U and vj ∈ V such that

ui /∈ V and vj /∈ U . But then u/ gcd(u, v) ≥ ui ≥ k and v/ gcd(u, v) ≥ vi ≥

k.

We assume that, for each node with ID i, a number P (i) ∈ C has been

stored in advance in its memory so that no two nodes have the same number.

It can be derived that |C| =
(

log n
log log n

)

≥ n for large enough values of n. Hence,

C is big enough as to assign a different number to each node.

In order to show the delay-optimality of this assignment it remains to be

proved that the biggest period is at most n, which we do in the following

lemma.
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Lemma 2. Given a positive integer 6 ≤ k ≤ n1/(2 log log n) − log n and a

compact set C defined as above, maxc∈C{c} ≤ n.

Proof. Given that pk > k log k for any k ≥ 1 [26], in order to form the com-

pact set C it is enough to use the prime numbers {pk, . . . , pk+log n}. Hence,

in order to prove the claim, it is enough to prove (pk+log n)log log n ≤ n. Given

that px < x(ln x + ln ln x) when x ≥ 6 [26], we want to prove

(

(k + log n)(ln(k + log n) + ln ln(k + log n))
)log log n

≤ n.

Manipulating, it can be verified that the inequality is true for k ≤ n1/(2 log log n)−

log n.

Now we are in conditions to state the main theorem for Recurring Selec-

tion which can be proved using Lemmas 1 and 2 and Theorems 1 and 5, and

can be extended to Recurring Reception and Recurring Transmission.

Theorem 6. Given a one-hop Radio Network with n nodes, where k ≤

n1/(2 log log n) − log n nodes are activated perhaps at different times, using a

compact set of periods Primed Selection solves the Recurring Selection prob-

lem with optimal message complexity k and kn delay, optimal for equiperiodic

protocols.

The good news is that this value of k is actually very big for most of the

applications of Sensor Networks, where a logarithmic density of nodes in any

one-hop neighborhood is usually assumed.
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3. Adaptive Protocols

In this section we study adaptive protocols for recurrent communication.

First, we present a protocol that improves the delay upper bound over Primed

Selection by utilizing a bigger node-memory size. Then, we present a delay

optimal protocol by additionally restricting the adversarial wake-up schedule.

Given that in these protocols nodes run a pre-processing phase without delay

guarantees, the efficiency metrics defined for oblivious protocols are reused,

but only after nodes have finished that phase.

3.1. Reduced Primed-Selection

The same technique used in Primed Selection yields a reduced delay if we

use only O(k) coprime periods in the whole network as long as we guarantee

that, for every node u, every pair of nodes i, j ∈ N(u) ∪ {u} use different

coprimes. However, given that the topology is unknown, it is not possible to

define an oblivious assignment that works under our adversary.

In this section, we show how to reduce the delay for Recurring Reception

introducing a pre-processing phase in which nodes make use of Primed Se-

lection to self-assign those primes appropriately. As argued in Section 2.2, a

protocol for Recurring Reception can also be used to solve Recurring Selec-

tion without extra cost and Recurring Transmission with constant overhead.

Given that in this protocol it is necessary to maintain a set of k primes, we

relax the node-memory constraint of the Weak Sensor Model as follows. If

the computational power of each node is such that the computation time is
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negligible with respect to the communication time (so that prime numbers

in an interval can be easily computed) it is enough to maintain membership

to that set. Thus, we assume that the memory size of each node is bounded

only by O(k + log n) bits. If that is not the case, we assume that nodes have

already in memory those prime numbers. Hence, by the prime number the-

orem, the memory bound becomes O(k2 log k + log n). We further assume

that nodes are deployed densely enough so that if we reduce the radius of

transmission to r/2 the network is still connected. This assumption intro-

duces only an additional constant factor in the total number of nodes to be

deployed n and the maximum degree k − 1.

We first give the intuition of the protocol. As before, we use prime num-

bers bigger than k but, additionally, the smallest k of them are left available.

More precisely, each node with ID i ∈ 1, . . . , n is assigned a big prime number

p(i) so that p(1) = pj+k < p(2) = pj+k+1 . . . p(n) = pj+k+n−1. Where pℓ is the

ℓ-th prime number and pj is the first prime number bigger than k. Again,

given that k ≤ n and using the prime number theorem [17], the size in bits

of the biggest prime is still in O(logn).

Using their big prime as a period of transmission nodes first compete

for one of the k small primes left available. Once a node chooses one of

these small primes, it announces its choice with period its big prime and

transmits its messages with period its small prime. If at a given time slot

these transmissions coincide, it is equivalent to the event of a collision of

the transmissions of two different nodes. We choose to produce one of them
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arbitrarily.

In order to prevent two nodes from choosing the same small prime, each

node maintains a counter. A node chooses an available small prime upon

reaching a final count. When a node reaches its final count and chooses,

it is guaranteed that all neighboring nodes lag behind enough so that they

receive the announcement of its choice before they can themselves choose a

small prime.

In order to ensure the correctness of the algorithm, no two nodes within

two hops should choose the same small prime. Therefore, we use as radius

of transmission r/2 for message communication and r for small-prime an-

nouncements.

The protocol is detailed in Algorithm 1. It was shown before that the

delay of Primed Selection is at most k(n + k)(ln(n + k) + ln ln(n + k)) if

n + k ≥ 6, when the first n primes bigger than k are used. Given that in

Reduced Primed-Selection we leave available the smallest k primes bigger

than k, the delay of this modified version of Primed Selection is at most

k(n + 2k)(ln(n + 2k) + ln ln(n + 2k)). For clarity of the presentation, we

denote this value as T .

Let us call a node that has chosen a small prime a decided node and

undecided otherwise. In order to prove correctnes, we have to prove that

every node becomes decided and that no pair of neighboring nodes choose

the same prime.

Lemma 3. Given any node u that becomes decided in the time slot t, the
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Algorithm 1: Reduced Primed-Selection. Pseudocode for node x with
assigned prime number p(x). T = k(n+2k)(ln(n+2k)+ ln ln(n+2k)).
The binary relation � represents component-wise lexicographic order.

1 my-counter← 0
2 my-time-awake← 1
3 used-small-primes← ∅

4 once per time slot while my-counter < 2T do

5 if my-time-awake ≡ 0 (mod p(x)) then //

6 transmit 〈count, my-counter, x〉 with radius r
7 else if 〈count, c, i〉 is received and (my-counter, x) � (c, i) then //

8 my-counter← 0
9 else if 〈prime, p〉 is received then //

10 used-small-primes← used-small-primes∪ {p}
11 increase my-counter and my-time-awake

12 end

13 my-small-prime-period← q /∈ used-small-primes // x becomes decided

14 once per time slot do

15 if my-time-awake ≡ 0 (mod p(x)) then //

16 transmit 〈prime, my-small-prime-period〉 with radius r
17 else if my-time-awake ≡ 0 (mod my-small-prime-period) then //

18 transmit 〈app-message〉 with radius r/2
19 increase my-time-awake

20 end

28



counter of every undecided node v ∈ N(u) is at most T in the time slot t.

Proof. Consider a node u that becomes decided at time t. For the sake of

contradiction, assume there is an undecided node v ∈ N(u) whose counter is

greater than T at t. By the definition of the algorithm, v did not receive a

bigger counter for more than T steps before t, and u did not receive a bigger

counter for 2T steps before t. In the interval [t− T, t] the local counter of u

is larger than the local counter of v. As shown in Theorem 4, v must receive

from u within T steps. But then, v must have been reset in the interval

[t− T, t].

Theorem 7. Given a Sensor Network with n nodes, where the maximum

degree is k − 1 and 6 ≤ k ≤ n, if nodes run Reduced Primed-Selection,

no pair of neighboring nodes choose the same small prime and every node

becomes decided within O(Tn2) steps after starting running the algorithm.

Proof. The first statement is a direct conclusion of Lemma 3 and Theorem 4.

For the second statement, if a node u is not reset within T steps no neighbor

of u has a bigger counter and u will become decided within 2T steps. Thus,

it takes at most (n+1)T steps for the first node in the network that becomes

decided. By definition of the algorithm, a decided node does not reset the

counter of any other node. Applying the same argument recursively the claim

follows.

Theorem 8. Given a Sensor Network with n nodes, where the maximum

degree is k − 1 and 6 ≤ k ≤ n, after the pre-processing, Reduced Primed-
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Selection solves the Recurring Reception problem with delay at most 2k2(ln(2k)+

ln ln(2k)) and optimal message complexity of k.

Proof. As in Theorem 4.

3.2. Optimal Delay

Due to the pigeonhole principle, any protocol for recurring communication

as defined has a delay of at least k − 1. Using adaptiveness, it was shown

in Section 3.1 how to obtain a delay of O(k2 log k) relaxing the memory

size restrictions. A natural question is how to improve further the delay

guarantee, perhaps at the cost of relaxing other restrictions. In this section,

we show that an asymptotically optimal delay of O(k) can be achieved by

restricting the adversarial node-activation schedule, assuming that each node

memory-size is bounded only by O((2(n + k) ln(n + k))k) bits.

We assume the presence of an adversary that activates each node at an

arbitrary time slot, but only τ time slots may separate the first and last

node-activation times. Nodes that are not activated during this time frame

will not become active at all, for instance due to failures. As in Section 3.1,

we further assume that nodes are deployed densely enough so that, if the

radius of transmission is reduced by a constant factor, the network is still

connected, introducing only a constant factor overhead in n and k. As before,

we focus in Recurring Reception given that Recurring Selection can be solved

without extra cost and Recurring Transmission introduces only a constant

factor overhead, as shown in Section 2.2.

30



The protocol presented in this section, named Prime-Compressed Selec-

tion, includes the same preprocessing technique used in Reduced Primed-

Selection (Section 3.1). Thus, in the description that follows, we focus on

the differences with respect to Reduced Primed-Selection and we reuse pre-

vious proofs.

Upon starting up, nodes compete using Primed Selection, i.e., transmit-

ting with their assigned prime period and radius r, although in this case

we use prime numbers bigger than 2k. Instead of competing for a small

prime as in Reduced Primed-Selection, each node competes to reserve some

slots among those left available by the schedule of transmissions of Primed

Selection. To decide when it is safe to choose slots for reservation, each

node uses a counter as in Reduced Primed-Selection. After choosing and

announcing its choice, each node uses those reserved slots to produce all its

future recurrent transmissions, using as radius of transmission r/2 to avoid

the hidden-terminal problem. Reusing previous notation, a node that has

already chosen slots is called decided node and undecided otherwise.

In order to disseminate the information needed to choose the slots left

available, upon activation, each node repeatedly transmits its pre-assigned

prime period, so that neighboring nodes within radius r keep track of slots

used. Waiting long enough, a node receives this information from all its

neighboring nodes that will be ever active. Armed with this information,

each node u creates a dynamic map, in its local memory, of the transmissions

scheduled in its neighborhood in the next interval of length p(u)
∏

i∈N(u) p(i),
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i.e., the period of the schedule of transmissions of u and its neighbors. The

map is dynamic in the sense that u updates the schedule to the next interval

for each time step and, additionally, u adds the information about slots used

by its neighbors upon receiving it. Based on this map, upon reaching its final

count, u makes its choice of available slots and announces its reservation of

incoming slots. The map of scheduled transmissions can be stored in u’s

memory because
∏

i∈N(u) pi < pk
n+k < ((n + k)(ln(n + k) + ln ln(n + k)))k

by [26].

Further details about the Prime-Compressed Selection protocol can be

found in Algorithm 2. We denote the upper bound on the delay of Primed

Selection using the smallest n primes bigger than 2k as in the previous section

T = k(n+2k)(ln(n+2k)+ ln ln(n+2k)). In the rest of the section, we prove

correctness and efficiency.

Theorem 9. Given a Sensor Network with n nodes, where the maximum

degree is k − 1 and 6 ≤ k ≤ n, if nodes run Prime-Compressed Selection,

no pair of neighboring nodes choose the same slot and every node becomes

decided within O(τ + Tn2) steps after starting running the algorithm.

Proof. We have to prove that every node becomes decided and that no pair

of neighboring nodes choose the same slot. The latter can be proved as in

Theorem 7. For the former, it has to be proved that all nodes have slots

available to make their choice, which we prove as follows.

Claim 1. For any set of k out of n nodes running Prime-Compressed Selec-
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Algorithm 2: Prime-Compressed Selection. Pseudocode for node x
with assigned prime number p(x). T = k(n+2k)(ln(n+2k)+ ln ln(n+
2k)). The binary relation � represents component-wise lexicographic
order.
1 my-time-awake← 1
2 set a circular queue of bits neighboring-transmissions according to p(x)
3 once per time slot while my-time-awake < τ + T do

4 if my-time-awake ≡ 0 (mod p(x)) then //

5 transmit 〈prime, p(x)〉 with radius r
6 else if 〈prime, p〉 or 〈count, c, p〉 is received then //

7 update neighboring-transmissions according to p
8 else if 〈slots, s, p〉 is received then //

9 update neighboring-transmissions according to s and p
10 increase my-time-awake

11 shift neighboring-transmissions for the next time step

12 end

13 my-counter← 0
14 once per time slot while my-counter < 2T do

15 if my-time-awake ≡ 0 (mod p(x)) then //

16 transmit 〈count, my-counter, p(x)〉 with radius r
17 else if 〈prime, p〉 is received then //

18 update neighboring-transmissions according to p
19 else if 〈count, c, p〉 is received then //

20 if (my-counter, x) � (c, p) then my-counter← 0
21 update neighboring-transmissions according to p

22 end

23 else if 〈slots, s, p〉 is received then //

24 update neighboring-transmissions according to s and p
25 increase my-counter and my-time-awake

26 shift neighboring-transmissions for the next time step

27 end

28 set a circular queue of bits my-reserved-slots according to neighboring-transmissions

29 once per time slot do

30 if my-time-awake ≡ 0 (mod p(x)) then //

31 transmit 〈slots, my-reserved-slots, p(x)〉 with radius r
32 else if my-time-awake is in my-reserved-slots then //

33 transmit 〈app-message〉 with radius r/2
34 increase my-time-awake

35 shift my-reserved-slots for the next time step

36 end

33



tion and for any interval of 2k time slots, there are at least k slots that are

not used for preprocessing transmissions.

Proof. For the sake of contradiction, assume the claim is false. Then, for

some set of k nodes, there is an interval of length 2k such that more than k

slots are used for transmissions with period a prime number. However, given

that the smallest prime is ≥ 2k, each of those transmissions correspond to a

different node. Given that there are at most k nodes in any neighborhood,

this is a contradiction.

Regarding the running time, waiting for τ + T time slots is enough to

guarantee that each node knows the schedule of transmissions of its neigh-

borhood, because within τ slots all neighboring nodes will be activated and

a non-colliding transmission is received from all neighboring nodes within

Primed Selection maximum delay of T . On the other hand, O(Tn2) steps

are enough for all nodes to become decided as shown in Theorem 7. Thus,

the claim follows.

The following theorem establishes the result presented in this section.

Theorem 10. Given a Sensor Network with n nodes, where the maximum

degree is k − 1 and 6 ≤ k ≤ n, after the pre-processing, Prime-Compressed

Selection solves the Recurring Reception problem with message complexity of

1 and delay in O(k).
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4. Conclusions

In this paper, deterministic communication under restricted models of

Radio Networks has been studied. The metrics used to establish efficiency

were the overhead on the number of transmissions that a node has to produce

to effectively communicate with its neighbors, and the delay produced by this

overhead. Simple pigeonhole-principle arguments yielded lower bounds for

these metrics, both matched for the important class of equiperiodic proto-

cols, and in message complexity for oblivious protocols. Relaxing the node-

memory size and the node-activation schedule constraints, it was shown how

to improve the time delay using adaptiveness, matching the lower bound.

We leave for future work the study of upper bounds that hold even without

these relaxations or lower bounds that show that such goal is not feasible.

Another important line of work is to consider models were the total number

of nodes n or the number of nodes activated k is unknown beforehand.
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