
Future Network and MobileSummit 2012 Conference Proceedings
Paul Cunningham and Miriam Cunningham (Eds)
IIMC International Information Management Corporation, 2012
ISBN: 978-1-905824-29-8

A Modular, Flexible and Virtualizable
Framework for IEEE 802.11

Pablo SALVADOR1,2, Stefano PARIS3, Claudio PISA4, Paul PATRAS5, Yan
GRUNENBERGER6, Xavier PEREZ-COSTA7, Janusz GOZDECKI8

1Institute IMDEA Networks, Leganes, 28918, Spain, Email: josepablo.salvador@imdea.org
2University Carlos III of Madrid, Leganes, 28918, Spain

3MobiMESH, Milan, Italy, Email: stefano.paris@mobimesh.it
4University of Rome ”Tor Vergata”, Rome, Italy, Email: claudio.pisa@uniroma2.it

5Hamilton Institute, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland,
Email: Paul.Patras@nuim.ie

6Telefonica Research, Barcelona, Spain, Email:yan@tid.es
7NEC Laboratories Europe, Network Research Division, 69115 Heidelberg, Germany,

Email:xavier.perez-costa@neclab.eu
8AGH University of Science and Technology, Krakow, 30-059, Poland,

Email:gozdecki@agh.edu.pl

Abstract: Wireless networks are extensively deployed due to their low cost and
configuration easiness. However, they are not adapted to the new services and appli-
cations that are increasingly demanded by users. Current implementation of the IEEE
802.11 specification is supported in hardware devices and software developments, but
they do not provide the adaptability that would enhance user experience in next gen-
eration networks. In this paper, we present a new wireless framework, based on the
one currently supported by the Linux stack: mac80211. This new framework, named
mac80211++, has been tailored to improve MAC features in terms of: (i) modular-
ity, by defining different 802.11 MAC services; (ii) flexibility, by enabling dynamic
configurability of the 802.11 MAC; (iii) virtualization, by managing parallel inde-
pendent 802.11 MACs accessing the same system resources.

Keywords: IEEE 802.11, WLAN, architecture, framework, mac80211, driver

1. Introduction
Wireless networks are a popular technology for Internet access. The evolution of new
services and applications require WLANs to rapidly adapt to these modifications. How-
ever, such evolution require new amendments in IEEE 802.11 standard [1] with the
consequently increase of time to approve them. In addition, these new changes must be
adopted by manufacturers by exploiting a new set of devices. Consequently, this pro-
cess is slow and time-consuming, making standardization much slower than real user
demands.

Most of WLAN card manufacturers follow the SoftMAC approach, much more flexible
compared to the old FullMAC solution. FullMAC leaves all the control of the MAC
layer functions to the card hardware/firmware, whereas SoftMAC implements a new
set of control MAC primitives at the software level. The framework mac80211 [2],
which is part of the Linux 802.11 stack and depicted in Fig. 1a, provides SoftMAC
capabilities. Nevertheless, the mac80211 lacks of modularity and flexibility since it is
a monolithic block composed of many sub-modules highly interconnected. Following
the FLAVIA [3] paradigm, we propose and develop a preliminary implementation of
a new framework, namely mac80211++, aimed to specify a solution whose advantages
are three-fold: modularity, flexibility and virtualization.

Research supported by the ICT FLAVIA Project, funded by the EU Seventh Framework Programme.

Copyright c© P. Salvador et al. www.FutureNetworkSummit.eu/2012 1 of 8



Then, the goals of mac80211++ are to leverage on the current implementation
mac80211, widely adopted in 802.11 networks, and to reduce the complexity and shorten
the time when introducing changes to the standard. This will boost the implementa-
tion of new improved services and reduce the amount of time for these modifications to
be commercialized. To this aim, we design a service scheduler and split the mac80211
framework components. The service scheduler adds and loads new services, flexibilizing
the implementation of new modules compared to the standard procedure. Untangling
the highly interdependent relations of the mac80211 components, we pursue to reduce
the complexity of the current framework and to foster its modularization, by allowing
sub-components being loaded independently.

2. Existing framework
Fig. 1a depicts an overview of the existing Linux 802.11 stack. This stack specifies the
framework mac80211 that enables SoftMAC-capable device drivers used for operating
with 802.11 hardware. While some of the MAC functionalities are implemented at the
hardware level, mac80211 implements features such as handling several higher-layer
components of the MAC, including support for HW/SW crypto, power saving, .11n
style aggregation or LED management. The mac80211 module plays two key roles: (i)
Wrap the packet incoming from the upper layers and translate them into the 802.11
frame format; (ii) Control management operations related to the IEEE 802.11 standard.

A standard wireless driver with Linux wireless capabilities includes some kernel
modules and provides interfaces used by user level tools to configure the device behavior,
as depicted in Fig. 1a. The main modules defined in the framework are the mac80211
and the cfg80211; these modules are loaded and used by the drivers (e.g., ath5k, ath9k,
b43) that are implemented in separate Linux kernel modules.

(a) Overview of the mac80211 framework (b) Overview of the proposed mac80211++
Figure 1: Overview of the existing (left-sided) and proposed (right-sided) frameworks.

Bidirectional interfaces are defined among modules as represented in Fig. 1a by the
arrows. The exported functions provide a direct interface shown with the solid arrows.
The usage of an exported function introduces a dependency in the direction of the
arrow (e.g., the driver depends on mac80211). The interface in the other direction is
implemented through the registration of callbacks (i.e., function pointers). In Fig. 1a
this dependency is represented by dashed arrows and the labels represent the structure
containing the function pointers.

The rigidness of the mac80211 is a caveat for developing new services. This frame-
work is a rigid block formed by a set of sub-modules highly interconnected, e.g.: the

Copyright c© P. Salvador et al. www.FutureNetworkSummit.eu/2012 2 of 8



MAC layer management entity (mlme), the high throughput (ht) or the MPDU aggre-
gation (agg), as specified in the IEEE 802.11n standard [4]. These parts are defined in
dedicated files but not implemented as separated modules, thus preventing any kind of
modularization.

3. A new framework: mac80211++
Motivated by the rigidness of the mac80211 framework, we develop a new solution,
named mac80211++, which aims to overcome it. Fig. 1b depicts the new framework,
mac80211++, showing the new blocks introduced with respect to the existing frame-
work depicted in Fig. 1a. First, we provide a proof of concept of the modularity of
mac80211++. Second, we develop and implement a Function Handler and a Service
Scheduler that manage the loading and creation of new functions and services respec-
tively, proving flexibility. Third, we describe as well the virtualization support, by
adding an overlay layer, FLAVIAn, between the device drivers and the mac80211++
framework.

3.1 Modularity
The development of mac80211++ can be considered as a first and relevant step towards
the modularization of the wireless component inside the Linux kernel. Some mac80211
functionalities might be conveniently separated in order to provide the developers with
a novel degree of flexibility. Thus, we propose to “break” the monolithic mac80211
framework and evolve to a new extended and more modular framework. The basic idea
is to rely on the definition of well-defined interfaces for those functionalities. To this
aim, we follow the rate control module approach replicating its interaction modality.
This module depends on mac80211, but can be built as an independent module, within
the framework or at the driver level, being able to load it at run-time.

Table 1: APIs for mlme support (∗ = ieee80211 )
Basic mgmt operations Event handling functions Power mgmt and saving
∗mgmt assoc ∗sta rx queued mgmt ∗dynamic ps disable work
∗mgmt auth ∗mlme notify scan complete ∗dynamic ps enable work
∗mgmt deauth ∗sta rx notify ∗dynamic ps timer
∗mgmt disassoc ∗sta tx notify ∗send pspoll
∗sta setup sdata ∗recalc ps
∗sta work ∗sta to sleep

∗send nullfunc
∗sta reset beacon monitor
∗sta reset conn monitor
∗sta restart

Then, by using the same rationale we separate the management (mlme) algorithm
(STA operation) as well as the support for high throughput (ht) from the rest of
mac80211 modules. We describe the interfaces for the mlme module that we have
added through a mac80211 ops structure to the ieee80211 local structure. Table 1 il-
lustrates the three main categories: (i) the specific management part and its setup,
(ii) the event handling part that includes several notifications, timers and management
frames reception coming from the wireless network and (iii) functions related to power
saving and power management. Fig. 1b illustrates the extensions carried out in the
mac80211 framework, turning it into a more modular framework.

Copyright c© P. Salvador et al. www.FutureNetworkSummit.eu/2012 3 of 8



3.2 Flexibility
The flexibility provided by mac80211++ fosters the extension of the basic functionalities
defined by the IEEE 802.11 protocol. In particular, our framework permits to implement
innovative services and enhanced functions, providing a general yet flexible mechanism
to extend the mac80211 framework. To this end, we design and develop two auxiliary
kernel modules, namely the Service Scheduler and the Function Handler, which are liable,
respectively, for managing the scheduling of a new service and the registration of the
enhanced functions, which are executed at the occurrence of specific events handled by
mac80211++ (e.g., packet reception, packet transmission or channel switching).

Service Scheduler. The Service Scheduler has been designed to provide a simple and
standardized mechanism to schedule new services. Through this system, developers
can focus only on the implementation of the main service functions, using the Service
Scheduler as a mean to schedule periodically its execution. The Service Scheduler will
run the functions registered by the service during its initialization phase. In addition,
to simplify the implementation of a new service, the Service Scheduler architecture
improves its maintenance, since the implementation of its internal functions can be
improved to support enhanced services, as long as its APIs are not modified. Indeed, it
can be easily updated with more sophisticated functionalities to meet the requirements
of real-time systems.

Fig. 2(a) illustrates the main steps to register and execute a new service. When a new
service is registered, the Service Scheduler creates a new Linux kernel work representing
the task implementing the deferred service function, and adds it to a dedicated work-
queue specifically designed to handle all services. When the timer expires, the Linux
kernel work implementing the service is queued on the work-queue, which contains all
the tasks that must be executed immediately. The Service Scheduler defines only one
Linux kernel thread to extract and activate the works implementing the services on
the work-queue, in order to serialize the management of all the events occurring in a
distributed scenario like the channel access.

Once the work can be scheduled, the Linux kernel thread, which handles the work-
queue, invokes an outer function, namely flavia srv container, which, in turn, executes
the function implementing the service (pointed by flavia service hook), and reschedules
the timer to execute the service later.

(a) Work Flow (b) Work-Queue
Figure 2: Service Scheduler: Flow chart and work-queue.

Function Handler. The Function Handler (FH) is designed to provide a standardized
mechanism to hook the mac80211++ code (i.e., to add piece of code that acts as glue
between any function and the mac80211 procedures). More specifically, the FH permits

Copyright c© P. Salvador et al. www.FutureNetworkSummit.eu/2012 4 of 8



to register a function to any hook added to the mac80211++ code; thus improving
its functionalities with new functions. As depicted in Fig. 3, at the occurrence of a
specific event, the Function Handler will call the functions previously registered on that
hook. For example, when a new frame is received, the control flow of the mac80211
code reaches a hook that transfers the control to the FH, which, in turn, invokes the
execution of all functions registered on that hook. Note that the function invoked by the
Function Handler can register a service or create a new task executed by an independent
kernel thread. Therefore, the FH mechanism provides a high level of flexibility to the
developers of new functionalities and services.

(a) Work Flow (b) Hooks Double Linked List
Figure 3: Function Handler: Flow-chart describing the main operations performed by the Function Handler and
structure used to fulfill the management task.

3.3 Virtualization
While mac80211++ extends the capabilities of the original mac80211, the design of the
mac80211 framework is intrinsically bound to the physical capabilities of the HW ad-
vertised by the different device drivers. Past research work [5, 6, 7, 8] has demonstrated
that single radio hardware could be virtualized in a way very similar to the virtualization
of computational resource in the hardware resources of computer. mac80211, and by
extension mac80211++, brings a logical view to the different wireless interfaces present
in the system, but does not offer the proper abstraction necessary for implementing
proper virtualization without breaking the existing code base. To overcome this lim-
itation, we design FLAVIAn, an overlay layer that offers virtualization capabilities to
mac80211 and mac80211++, while preserving the existing hooks and API.

Therefore, FLAVIAn abstraction is twofold: first, FLAVIAn presents the usual
drivers hooks that the traditional mac80211 is expecting. As well, FLAVIAn proposes
the counterpart drop-in replacements to be used in each hardware driver

To ensure appropriate interaction of the mac80211 stack and the device drivers
through the FLAVIAn overlay, a small modification in the driver code is also required
in order to reroute the mac80211 callbacks to the equivalent ieee80211 flavian ops struc-
ture specified by the FLAVIAn overlay.

The key functionality covered by these handlers cover frame transmission, enabling/
disabling the hardware, configuring Rx filtering or notifying about status of the scanning
procedure (start/complete). Similar modifications will be required to support other
mac80211 drivers (e.g., ath9k, b43) with the FLAVIAn overlay, but as we explained
above, such changes will involve limited programming effort.

Copyright c© P. Salvador et al. www.FutureNetworkSummit.eu/2012 5 of 8



4. Use Cases
This section specifies a representative set of use cases to illustrate the functionality
introduced by the mac80211++ framework.

4.1 Advanced Monitoring
The Advanced Monitoring Service (AMS) module provides a passive monitoring service
able to measure several parameters related to radio channel conditions, capabilities
of neighboring nodes and MAC 802.11 parameters estimation. Each node performs
PHY/MAC layer measurements within the time-scale of microseconds. The wireless
cards are set to promiscuous mode to ensure a comprehensive view of the current wire-
less channel conditions. Then, all the measurements are performed within the normal
activity of the wireless card and reported periodically. The AMS module supports mul-
tiple network interfaces per node. It works on a frame level, meaning that all the frames
sent and received by each network interface must be examined by the AMS functions.
This imposes high requirements on the AMS module on the effectiveness of the frame
analysis (i.e., limited computational power available at the nodes).

The AMS module hooks in the mac80211 module of the Linux kernel are placed
in the ieee80211 rx() function for the downlink frame path and in the ieee80211 tx()
function for the uplink frame path. The measurement functions called by the hooks
require access to each frame header and frame timing information to discover and
calculate a set of parameters per each neighboring station interface, such as: supported
rates, SNR, F/BER, RTS Threshold or number of retransmissions.

For communication with user space the netlink mechanism is used. The application
that requires monitoring data from the AMS module sends the command to the receiv-
ing function of the AMS module. This command defines the parameters the application
requests and the time interval at which results are to be sent to the application.

4.2 SuperSense (SPS)
The virtualization and flexibility features of our proposed framework foster the develop-
ment of SuperSense (SPS), an innovative monitoring service that dynamically analyses
the available wireless spectrum using both passive and active techniques to estimate the
best network configuration. SPS analyses continuously the available wireless channels
to select the set of parameters that provides the best network performance.

The monitoring activity is performed concurrently to the data TX using two virtual
interfaces operating over a single physical interface. The virtualization module is liable
for scheduling the activities of the different virtual interfaces. In particular, the time
spent for data transmission and active monitoring tasks is scheduled according to a
time division mechanism implemented using a preemptive weighted round robin policy.

This module sets and manages the total duration of a SPS period and the specific
length of the operation modes by introducing a new data structure, the super-frame.
The duty-cycle of the super-frame, representing the alternation of transmission and
monitoring phases along with the time assigned to each activity, is broadcast by the
Access Point using a new Information Element (IE) contained in the beacon. The IE
contains two main variables indicating the overall duration of the super-frame and the
time spent to perform the active monitoring. Every super-frame always starts with an
active monitoring period followed by a transmission period, in which all nodes that
belong to the same BSS operate using the same medium access mechanisms (either

Copyright c© P. Salvador et al. www.FutureNetworkSummit.eu/2012 6 of 8



CSMA/CA or TDMA) to transmit their data traffic. During an active monitoring
frame, only one node is allowed to send probes on the wireless channel in order to
estimate actively the quality of the wireless links established with nearby nodes and
the interference which might be generated by external sources.

4.3 Power Saving (PS)
The goal of the Power Saving (PS) service module is to enable various power saving
algorithms, such as NoA/ASPP [9], to be easily implemented by specifying helpful
functional blocks and their interactions with other services or functions.

Thanks to the modularity and flexibility exposed by mac80211++, this PS service
is easily implemented as a loadable module. For that, we define the following two
functions: (i) ps policy(), which is registered into the Function Handler. It incorporates
the logic of the developed algorithms and stores information of the mechanism(s) in
operation and its(their) state; (ii) ps management(), which provides management logic
to support the PS mechanisms being implemented.

A generic PS scheme might require the ability of triggering sleep/awake events. This
action is ultimately performed in HW by setting the proper HW registers accordingly.
We then specify a primitive to communicate to the immediately lower layer the notifi-
cation to execute the chosen event: drv ps notify(): This is a notification primitive and
requires drivers to provide its proper handling. Thus, we push all the “intelligence”
to the upper layer, designing this way a hardware-agnostic PS framework. In order to
support sleep/awake transitions typically required by power saving algorithms, it is still
needed that drivers and firmware support sleep/awake events (issued by the previously
mentioned primitives of the PS service).

4.4 Rate Adaptation
Most of the current mac80211 drivers rely on rate control algorithms provided by the
framework. These algorithms are encapsulated in independent kernel modules that are
linked to the specific driver once a new device is being loaded. The naming convention
of these modules is based on an rc80211 prefix, followed by the name of the algorithm.
mac80211 implements two rate adaptation schemes, Minstrel and PID, but also per-
mits the drivers to implement specific rate adaptation mechanisms and register them
upon device initialization to notify the mac80211 framework that rate selection will be
handled by the driver itself. One example of such drivers is ath9k for Atheros cards.

Despite the differences of these two approaches, they both use a common mechanism
to interface with the mac80211 framework. Specifically, the rate control ops callbacks
are registered by the rate adaptation module to the framework. These design principles
are illustrated in Fig. 4.

Figure 4: Interfacing Rate Control with mac80211.

Given the platform’s modularity and flexibility in allowing the integration of new
rate adaptation schemes, we investigate how a collision aware rate control algorithm,

Copyright c© P. Salvador et al. www.FutureNetworkSummit.eu/2012 7 of 8



H-RCA [10], could be implemented. This is motivated by the fact that current state-
of-the-art algorithms do not distinguish losses due to packet collisions from losses that
occur due to noise. The driver incorporating H-RCA takes an approach similar to the
rate control algorithms of ath9k. To register the H-RCA algorithm to the mac80211
framework, the driver is required to invoke ieee80211 rate control register function pass-
ing a reference to a rate control ops structure, which contains the handlers implemented
by the algorithm.

5. Summary & Conclusions
This paper provides the specifications of a high level software architecture that proves
the modularity, flexibility and virtualization accomplished by our framework to enhance
user experience in wireless networks. Working at that level allows to extend every
modification to almost any existing HW.

Our specification has started from an existing framework in Linux, mac80211, which
has been substantially extended in order to support the aforementioned features. This
new framework, namely mac80211++, becomes our development platform. Specifically,
the extension of the mac80211++ is twofold: (i) We intend to create a modular frame-
work by untangling the existing mac80211, at the present at early stage of development.
(ii) We have developed and implemented a Service Handling module that allows loading
new services in real-time, based on the mac80211++ framework.

We have identified as candidate modules to be implemented key representative
blocks such as SPS and Power Saving. In order to implement the virtualization, a
new layer, called FLAVIAn, has been specified between the framework and the wire-
less drivers, exceeding the bounded capabilities of the driver on which the mac80211
framework relies.

References
[1] “IEEE Standard for Information Technology-Telecommunications and Information Exchange Between

Systems-Local and Metropolitan Area Networks-Specific Requirements - Part 11: Wireless LAN MAC
and Physical Layer (PHY) Specifications,” IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999).

[2] Linux kernel mac80211 framework for wireless device driver.
http://linuxwireless.org/en/developers/Documentation/mac80211.

[3] FLAVIA Project (Flexible Architecture for Internet Access). http://www.ict-flavia.eu/.

[4] “IEEE Standard for Information technology–Telecommunications and information exchange between
systems–Local and metropolitan area networks–Specific requirements Part 11: Wireless LAN MAC and
PHY Specifications Amendment 5: Enhancements for Higher Throughput,” IEEE Std 802.11n-2009.

[5] G. Bhanage, D. Vete, I. Seskar, and D. Raychaudhuri, “SplitAP: Leveraging Wireless Network Virtualiza-
tion for Flexible Sharing of WLANs,” in IEEE GLOBECOM, pp. 1 –6, dec. 2010.

[6] T. Hamaguchi, T. Komata, T. Nagai, and H. Shigeno, “A Framework of Better Deployment for WLAN
Access Point Using Virtualization Technique,” in IEEE WAINA, pp. 968 –973, Apr. 2010.

[7] L. Xia, S. Kumar, X. Yang, P. Gopalakrishnan, Y. Liu, S. Schoenberg, and X. Guo, “Virtual WiFi: bring
virtualization from wired to wireless,” in Proc. of the 7th ACM SIGPLAN/SIGOPS, VEE ’11, (Newport
Beach, California, USA), pp. 181–192, 2011.

[8] G. Aljabari and E. Eren, “Virtualization of wireless LAN infrastructures,” in IEEE IDAACS, vol. 2, pp. 837
–841, Sept. 2011.

[9] D. Camps-Mur, X. Pérez-Costa, and S. Sallent-Ribes, “Designing energy efficient access points with wi-fi
direct,” Elsevier Comput. Netw., vol. 55, pp. 2838–2855, Sept. 2011.

[10] K. Huang, K. R. Duffy, and D. Malone, “H-RCA: 802.11 Collision-aware Rate Control,” Technical report,
Hamilton Institute, 2011.

Copyright c© P. Salvador et al. www.FutureNetworkSummit.eu/2012 8 of 8


	Introduction
	Existing framework
	A new framework: mac80211++
	Modularity
	Flexibility
	Virtualization

	Use Cases
	Advanced Monitoring
	SuperSense (SPS)
	Power Saving (PS)
	Rate Adaptation

	Summary & Conclusions

