UNIVERSITY CARLOSIII OF MADRID

Department of Telematics Engineering

Master of Science Thesis

Control Theoretic Optimization of 802.11 WLANS:
I mplementation and Experimental Evaluation

Author: Andrea M annocci
M.Sc. in Computer Science Engineering

SupervisorsAlbert Banchs Roca, Ph.D.
Vincenzo Mancuso, Ph.D.

Legares, July 2011

Abstract

In 802.11 WLANS, the dynamic adaptation of the contention parameters adtwgmk condi-
tions results in relevant performance improvements. Despite the ability toelizege parameters
has been available in standard devices for years, no adaptive meuhasiigy this functionality
has been validated in a realistic deployment so far.

In our work, we report our experiences related to the implementation atdation of two
adaptive algorithms based on control theory, one centralized and dribudied, in a large-scale
testbed consisting of eighteen commercial off-the-shelf devices. Waucbegtensive measure-
ments under non-ideal channel condition, considering the impact ofafitfaetwork scenarios in
terms of number of active nodes and traffic generated. We show thaalgoitithms significantly
outperform the standard configuration in terms of total throughput. Weeigose the limita-
tions inherent to distributed schemes, and demonstrate that the centralizeddapsubstantially
improves performance under a broad variety of scenarios, whichremniiis suitability for real
deployments.

Table of Contents

6

7

I ntroduction

Background

2.1
2.2
2.3
2.4

IEEE802.11EDCA
Optimal Point of Operation of the WLAN
Centralized Adaptive Control Algorithm
Distributed Adaptive Control Algorithm

Implementation Details

3.1
3.2
3.3
3.4

Implementation Overview
Estimationof so
Estimationofpyn - - -« . . . oo
Contention Window Update

Testbed Description and Validation of the Implementation

4.1
4.2

Testbed Description
Validation of the Algorithms

Perfor mance Evaluation

5.1
5.2
5.3
54
5.5
5.6

UDP Throughput
Impact of SNR on Throughput
Hidden Nodes Scenario
Impact Network Size
TCP Throughput
TCP TransferDelay

Related Work

Conclusions

References

List of Figures

2.1 Retryflag markinguponcollisions.
2.2 CACalgorithm. e
2.3 DACalgorithm.

3.1 CACandDAC implementations.

4.1 Deployedtestbed.
4.2 SNR of the links between each node and the Access Point. e
4.3 CWpin used by four selected nodes and the estimpggdandp,.,,, with DAC. .
4.4 Announced’W,,;, and observed collision probability with CAC.

5.1 Total throughput with UDP traffic.

5.2 Throughput per station with UDP traffic.
5.3 Throughput obtainedvs. SNR.
5.4 Performance with hiddennodes.
5.5 Total throughput for different number of stations. e e
5.6 Fairness for different number of stations.
5.7 Total throughput of FTP-like traffic.
5.8 Throughput per station with FTP-like traffic.
59 TCPdelayperformances. i
5.10 Upload tranfers duration for the three mechanisins (/30s).

19
19
20

23
23
24
24

Chapter 1

| ntroduction

The IEEE 802.11 standard for Wireless LANs [14] has become one ahtie# commonly
used technologies to provide broadband connectivity to the Internetddfaelt channel access
mechanism employed in IEEE 802.11 networks is based on a CSMA/CA scheguégted by
a set of parameters that determines the aggressiveness of the stat@ngyilg to access the
channel. In particular, the contention windo@1}’) parameter controls the probability that a
station defers or transmits a frame once the medium has become idle, andrihéizs a key
impact on the WLAN performance.

Commercial devices implement a fixédV configuration, which is known to yield suboptimal
performance. Indeed, for a fix&dlV, if too many stations contend the collision rate will be very
high, while if few stations are backlogged the channel will be underutilizest widhe time. This
behavior has been analyzed by several works in the literature, e.gwh8h have shown that
adapting the”' W to the number of backlogged stations significantly improves performance.

Following the above result, an overwhelming number of solutions have geoptm adapt
the 802.11 MAC behavior to the observed network conditions with the goadaxdmizing the
WLAN performance [8, 20, 12, 16, 24, 23, 17, 22, 2, 6, 7]. Howews we detail in the
related work chapter, these previous works suffer from at leastobribese two limitations:
(7) their performance has not been assessed with real deployments,eaafbité lack experi-
mental evidences gathered from scenarios with non-ideal chaneets$ind implementation con-
straints [8, 20, 16, 24, 23, 17, 6, 7]; ai)they rely on non-standard capabilities, or functionality
that is not supported by existing wireless devices, and therefore wegltgre complex modifica-
tions to be implemented [8, 12, 16, 22, 2, 6, 7]. Furthermore, most of thelmeased on heuristics
and lack the mathematical foundations to guarantee optimal performandg 2,216, 2].

In this thesis we present our experiences with the implementation of two aglajgorithms,
namely theCentralized Adaptive ContrdCAC) [18] and theDistributed Adaptive ContrgIDAC)
[19], both based on a Proportional Integrator (PI) controller thatdynally tunes the&’1 con-
figuration to optimize performance. In contrast to previous proposath, digorithms are sup-
ported by solid theoretical foundations from control theory and canak#yeimplemented with
unmodified existing devices.

We first provide a detailed description of the implementation of our adaptivéanéims,
which run as user space applications and rely on standardized sydteno @astimate the con-
tention level in the WLAN and adjust th@1" configuration of 802.11 stations. We also provide
insights into the differences between the theoretical design and the pranptamentation of the

2 Chapter 1. Introduction

algorithms, caused by the inherent limitations of the real devices. Furthermerdemonstrate
the feasibility of utilizing these algorithms with commercial off-the-shelf (COT&)ware and
open-source device drivers.

By conducting exhaustive experiments in a large-scale testbed consisti@ydevices, we
evaluate the performance of our proposals under non-ideal chaffaets and different traffic
conditions. Additionally, we compare the performance of our algorithms sigdie default IEEE
802.11 configuration, and identify those scenarios where a netwot&yheent can benefit from
using such adaptive algorithms.

Our results confirm that both approaches outperform the standafdsltischeme, improving
the performance by up to 50%. Our experiments also reveal that the distriglgorithm suffers
from a number of problems with heterogeneous radio links, which aredanhé its distributed
nature and the limitations of the wireless interfaces. In contrast, the cendratheme exhibits
remarkable performances under a wide spectrum of network condifidresconclusions drawn
from our analysis prove the feasibility of using adaptive MAC mechanismedilistic scenarios
and provide valuable insights for their design.

The remainder of the thesis is organized as follows. Chapter 2 summarizZiethe302.11
EDCA protocol and the underlying principles of CAC and DAC. In Chaptare3report details
about the implementation of the functionality comprised by the proposed sch@master 4 de-
scribes our testbed and the validation of the implementation of the algorithmsteCbhgpesents
a thorough experimental study of the algorithms in a broad set of netwaidittins. Finally,
Chapter 6 summarizes the related work and Chapter 7 concludes the work.

Chapter 2

Background

This chapter briefly summarizes the behavior of IEEE 802.11 EDCA mecharasd the
ideas on which the two adaptive protocols implemented and assessedeheased on.

21 |EEE 802.11 EDCA

The IEEE 802.11 Enhanced Distributed Channel Access (EDCA) mithama CSMA/CA-
based protocol that operates as follows. As depicted in Fig. 2.1, upavdéilability of a frame
to be transmitted, a station is allowed to send it on air only after having sensetiaheel idle
for a period of time equal to the arbitration interframe space paramatar§). Otherwise, if
the channel is found busy (either immediately or during Al S period), the station continues
to monitor the medium until it is sensed idle for &d F'S interval, and then enters in a backoff
process.

Upon starting the backoff process, a station computes a random intafgmin distributed
in the rangd0, CTW — 1], and initializes its backoff time counter with this value. T8 value is
called the contention window, and depends on the number of failed transmégt@mpts. For the
first transmission attempt the minimum contention wind@wi(,,;,,) is used. In case of a colli-
sion, its value doubles, up to a maximum valuid/,,..... The backoff time counter is decremented
once every time slot if the channel is sensed idle and frozen when an grtgansmission is de-

AIFS
il l AIFS
. PACKET &
STATION A l NN BUSY MEDIUM [11 s
. o B765432 T10
| ! !
| = | |
i SIFS i ‘
| © WIFS | |
[I I
i PACKET B I
STATICN B l | BUSY MEDILM | Ll " ——
— 543210
< MIFS i

SIFS

Figure 2.1: Retry flag marking upon collisions.

4 Chapter 2. Background

tected on the channel. Finally, when the backoff time counter reachestierstation transmits
its frame in the next time slot.

When two or more stations start transmitting simultaneously, a collision occuksoiedg-
ment (ACK) frames are used to notify a transmitting station of successfulyvestframes. In the
case of a failed transmission, the station double€’ifis and executes the backoff process again.
Once a frame has been successfully transmitted or the retry limit has bezadegdg 1V is set
again toC'W,,;,. To prevent duplicates, the standard provides a retryRlagorder to mark those
frames that are being retransmitted, i.e., the flag is set to 0 on the first tralssnaigkempt, and set
to 1 on every subsequent retransmission (see Fig. 2.1). As we distarssla algorithms exploit
this functionality to infer the network conditions and adaptdhé” of the stations accordingly.

To support service differentiation, EDCA implements different accetegodes (ACs) at ev-
ery station, each having a different backoff configuration. Therpaters of each AC are an-
nounced by the Access Point using the Beacon Frames. In the rest tvac¢kegtion we do not
consider service differentiation and assume that all stations only exeeuB=#h Effort AC.

2.2 Optimal Point of Operation of the WLAN

Both CAC and DAC share the goal of adjusting thél” to drive the WLAN to the optimal
point of operation that maximizes the total throughput given the obsewrtggrk conditions. Let
p denote the probability that a transmission attempt collides. Following [3], we &laown in
[18, 19] that the optimal collision probability in the WLAN,,; can be approximated by

2Te

Popt =~ l—e VT y (21)

whereT, is the duration of an idle slot (a PHY layer constant) dhds the average duration of

a collision. Thereforep,,; does not depend on the number of stations, but only on the average
duration of a collisionT,.. Given the average length[L] of the longest packet involved in a
collisions, T, can be computed using

E[L
T.=Tprcp + é] + EIFS.
whereTprcp is the duration of the Physical Layer Convergence Protocol (PLGH)npble and
header(” is the modulation rate anl/ F'S is a PHY layer constant.

2.3 Centralized Adaptive Control Algorithm

The Centralized Adaptive Contr@lCAC) algorithm [18], illustrated in Fig. 2.2, is based on a
PI1 controller located at the Access Point (AP). This controller computesahfiguration of the
CWnin parameter, Whil€'W,,,.. is set al' W00 = 2™ C Wi in order to benefit from the fea-
tures of the binary exponential backoff algorithm (withbeing set as in the default configuration,
which ism = 6 for IEEE 802.11a).

Following the above, the controller performs two tasks every beaconat{@pprox. 100 ms):
() it estimates the current point of operation of the WLAN as given by themes collision
probability p.s, and ¢7) based on this estimation ampg,;, it computes th&”'WW configuration to
be used during the next beacon interval and sends it to the stations inanbfesame.

5 Chapter 2. Background

(o)) |
V) STAN
AP N
pOPt_ PI VAV
Controller ((STA 2
+ VAN
Pobs Z'1 ||

Figure 2.2: CAC algorithm.

The computation gp,;s is based on the observation of the retry flag of successful frames. Let
us denote by?; (Ry) the number of observed frames with the retry bit set (unset) duringa@bea
interval. Assuming that no frames exceed the retry limit given byMPs_RETRY parametet,
and that transmissions attempts collide with a constant and independertifitpBahe observed
probability of a collision in the WLAN can be estimated with (see [18]):

Ry

_— 2.2
Ro+ Ry (2.2)

Pobs =
The error signak fed into the PI controller to calculate the n&éw/1/,,,;,, is computed as the
difference between the observed collision probabjify and the target valug,,:

€ = Pobs — Popt- (23)

In this way, when the observed collision probability is above the target védaesrror signal
will be positive and trigger an increase of théV,,,;,,, and consequently a decrease of the collision
rate in the next beacon interval. Similarly, when the collision probability is belevetget value,
CWin is decreased in order to increase the activity on the channel.

The {Kp, K} parameters of the Pl controller are obtained using the Ziegler-Nichols rules
to achieve a proper trade-off between stability and speed of reactiomigel, and are given by
(see [18] for the details):

KP — 0.8 .
pipt(lﬂlopt ZZZ& (QPOPt)k) ’

(2.4)

KI _ 0.4
0'85'p§pt(1+popt Zzl;ol (2popt)*)

The operation of CAC is summarized in Algorithm 1.

!Note that this assumption is accurate as in an optimally configured WLAN thsi@o probability is very low.
2This assumption has been widely used and shown to be accurate, .58 e.g

6 Chapter 2. Background

Algorithm 1 Centralized Adaptive Control algorithm.
1: whiletruedo
2: repeat
if new frame sniffedhen
retrieve retry flag
if retry flag is sethen
IncrementR;
else
IncrementR,
end if
10: end if
11: until new beacon interval
12: computep,ps[t] using (2.2)
13: 6[t] = Pobs [t] — Popt
14: Cszn[ﬂ = CWmin[t — 1] + Kp - 6[t]+

15: +(K;— Kp) - et — 1]
16: send beacon with ne@ W configuration
17: end while

2.4 Distributed Adaptive Control Algorithm

TheDistributed Adaptive ContrdDAC) algorithm [19] employs an independent PI controller
at each station to compute €3I/ configuration, to drive the overall collision probability to the
target valuep,,,;. As illustrated in Fig. 2.3, each controller computes i&,,,;,, value employed
by its Network Interface Card (NIC), based on the locally observedariteonditions. Similarly
to CAC,CW,az is set all W0 = 2" CWonin.-

While with centralized approaches all stations use the same configuratiadgadny a single
entity, and therefore fairly share the channel, with distributed appreatii®is not necessarily
the case. To guarantee a fair throughput distribution, the error sigjiaéd in DAC consists of
two terms: one to drive the WLAN to the desired point of operation, and anathe to achieve
fairness between stations. More specifically, the error signal at stasagiven by

€i = €collision,i + € fairness,i- (25)

The first term of (2.5) ensures that the collision probability in the networkiised to the
target value:
€collision,i — Pobs,i — Popt, (26)
wherep,, ; denotes the collision probability as measured by statidWhen the collision prob-
ability observed by stationis larger than the target value, the above term yields a positive error
that increases th€1V of stationi, thereby reducing the collision probability.
The second term of (2.5) is computed as

€ fairness,i — Pobs,i — Pown,i, (27)

wherep,.n,; is the collision probability experienced by statian The purpose of this second
component ofe; is to drive theCW of all stations to the same value. Indeed, the higher the

7 Chapter 2. Background

STAN
popt - Pl CWmin,N
Controller
+
71 e Sniffer &
2'Pobs,N - PownN Stats collector
Q STA 1 (
popt - P| CWmin,1
Controller
+
7 le Sniffer &
2Pobs,1 = Pown,1 Stats collector

Figure 2.3: DAC algorithm.

CWnin, the lower the number of collisions caused, and thereby, the lower theveldsepllision
probability p.ys ; is. Therefore, a station will increase t8V,,;, if it experiences less collisions
than the others.

To compute the error signal, each station needs to measggreandpy,,,;. The former is
computed ag,s in CAC. For the computation of,,,, ;, we rely on the following statistics which
are readily available from wireless cards: the number of successhsimiiasion attempt$’ and
the number of failed attempfs. With these statistic$,.,,; IS computed as:

F

Pown,i = F+T (28)

Each station will estimatg,s ; andp,..»,; and compute the error signal which is provided
to the Pl controller for the computation of the néWV,,,;,, ;. Like in CAC, we choose to trigger an
update of theC'W,,,;,, ; every beacon interval, as this is compatible with existing 802.11 hardware,
which is able to update the EDCA configuration at the beacon frequency.

Although the analysis of DAC, based on multivariable control theory, siamifly differs
from the analysis of CAC, based on standard control theory{ itig, K;} parameters that each
station uses are the same ones of (2.4), as proved in [19]. The DAGtmpeis summarized in
Algorithm 2.

Chapter 2. Background

Algorithm 2 Distributed Adaptive Control algorithm.

1: whiletruedo

2:

10:
11:
12:
13:
14:

repeat
if new frame sniffedhen
retrieve retry flag and
incrementR, or Ry accordingly
end if
until beacon received
computep,ys ; using (2.2)
fetchT and F' from driver stats
COMPUtEPyy,n,; USING (2.8)
e[t] =2 pobs,i[t] - pown,i[t] — Popt
CWin[t] = CWpin[t — 1] + Kp - e[t]+
+(K;— Kp) - e[t — 1]
update the local’WW configuration

15: end while

Chapter 3

| mplementation Details

A major advantage of CAC and DAC is that they are based on functionalitesdiravailable
in IEEE 802.11 devices, and therefore can be implemented with COTS hardwahis chapter,
we describe the hardware used in our deployment and the implementation fohti®nality
required by CAC and DAC.

3.1 Implementation Overview

We have implemented our algorithms using Soekris net4826-48 déviddwese are low-
power, low-costs computers equipped with 233MHz AMD Geode SC1100sCP Mini-PCI
sockets, 128 Mbyte SDRAM and 256 Mbyte compact flash circuits for datage. To accom-
modate the installation of current Linux distributions, we have extended ttegstoapacity of the
boards with 2 GB USB drives. As wireless interfaces, we used AtheRiglA4-based 802.11a/b/g
devices.

As software platform we installed Gentoo Linux OS (kernel 2.6.24) and dpelpr MadWifi
open-source WLAN drivér(version v0.9.4), which we modified as follows) (ve enabled the
dynamic setting of the EDCA parameters for the best effort access catedoch is in line with
the standard specifications but disabled by default in the drivgrwe overwrote the drivers’
EDCA values for the best-effort traffic with the standard recommended @], and i7) for the
case of DAC we modified the driver to enable the stations to employ the locallyutetheDCA
configuration using standardized system calls (as described in SectjoriT8&l source code of
the modified drivers and our implemented prototypes is available ofline.

Fig. 3.1 illustrates the main modules of our implementation of CAC and DAC. The algo-
rithms do not require introducing modifications to the hardware/firmware aee ktight timing
constraints, and therefore they can run as user-space applicatibogrtiraunicate with the driver
by means of OCTL calls. We also take advantage of the ability of the MadWifi driver to support
multiple virtual devices using different operation modes (master/managed/manitio a single
physical interface. In the following we detail the implementation of the diffemsrdules.

http: // ww. soekris. conl
2http:// madwi fi- project.org/
Shtt p: // www. hami | ton. i e/ ppat ras/\ #code

10 Chapter 3. Implementation Details

AP User space STA User space
Centralized Adaptive Control Distributed Adaptive Control
CWmin CWmin
CW Configuration Module CW Configuration Module
A A A
(Configuration Pabs oz Recs
Private | to be sent w/ Frame Private Statistics Frame
IOCTL | nextbeacon) Sniffer Iocﬁ'l' Collector Sniffer
call ca
K x X
SIOCGATHSTATS
Data Flrames . OCIZTL Data Flrames
Master mode Monitor mode Managed mode Monitor mode
virtual interface virtual interface virtual interface virtual interface
| | | | ¥ | |
 Z | Kernel space L 4 | | Kemel space
| MadWifi driver ‘ | MadWifi driver A
| | | |
| Beaconv Wireless Interface * | | Wireless Interface * |

frames

Figure 3.1: CAC and DAC implementations.

3.2 Estimation of pgps

Both algorithms require to estimate the collision probability observed in the WLANLtHe
case of CAC this is performed only at the AP and resulis, i, while for the case of DAC this is
performed independently at each statiaand results i ;. The estimators are computed with
(2.2), which relies on observing the retry flag of the overheard fralfvesiext explain how these
values are obtained from a practical perspective.

To overhear frames, we utilize a virtual device operating in the so caibed t or mode
with promiscuous configuration. With this configuration, the device padigeaffic to user-space
applications, including frames not addressed to the station. We also centigudevice to pass
the received frames with full IEEE 802.11 link layer headers, such tedttame Control field of
the frames (where the retry flag resides) can be examined.

With this set-up, the algorithms opem awsocket to the driver, which enables the reception of
Layer 2 frames. Through this socket the algorithms listen for transmitted $ranmbprocess their
headers in an independent thread (the “Frame Sniffer” module of Fij. Bak every observed
frame, one of the counters used in the estimation of the collision probability Esnertted R if
the retry flag was unsegr); if the retry flag was set. Every beacon interval the computatignQf
Or pobs,i USING (2.2) is triggered, and then the counters are reset to zero.

3.3 Estimation of pown

In addition to the observed collision probability, ;, the DAC algorithm requires to estimate
the experienced collision probabilify,. ;. We perform this computation in the “Statistics Col-
lector” module of Fig. 3.1 using information recorded by the wireless drMere specifically, at
the end of a beacon interval we open a communication channel with the oh$tance, config-

11 Chapter 3. Implementation Details

ured inmanaged mode, and perform 8l OCGATHSTATS | OCTL request. Upon this request,
the driver populates aat h_st at s data structure, which contains detailed information about the
transmitted and received frames since the Linux kernel has loaded tiee ohddule. Out of the
statistics retrieved, the records that are of particular interest for our mngpitation are:

e ast _t x_packet s: number of unique frames sent to the transmission interface.
e ast _t x_noack: number of transmitted frames that do not require ACK.

e ast _t x_| ongr et r y: number of transmission retries of frames larger than the RTS thresh-
old. As we do not use the RTS/CTS mechanisms, this is the total number osratssions.

e ast tx xretries: number of frames not transmitted due to exceeding the retry limit,
which is set by thé&/AX_RETRY parameter.

To computep,,n,; we need to count the number of successful transmissions and the number
of failed attempts. To compute the former, we subtract from the number ofi@riigmes those
that are not acknowledged (e.g., management frames) and those thatoteelivered,

Successesast _t x_packets — ast_txxretries — ast_tx_noack.

Similarly, to compute the number of failed attempts, out of the total number of setiasions we
do not count those retransmissions caused by frames that were élyedisEarded because the
MAX_RETRY limit was reached, therefore,

Failures=ast tx_longretry — ast_txxretries - MAXRETRY.
With the above, the termB and7’ of (2.8) used to estimate,,,, ; are computed as

F[t] = Failures[t] - Failures][t-1],
T[t] = Successes|[t]- Successes[t-1],

wheret denotes the time of the current beacon intervaliandl the previous one.

3.4 Contention Window Update

With the estimated collision probabilities, CAC and DAC compute the error sigribéand
of a beacon interval according to (2.3) and (2.5), respectively. dipg on this value, the PI
controller triggers an update of tkielV,,,;,, to be used in the next beacon intervahccording to
the following expression:

CWmm[t] = CWmm[t — 1] + Kp- e[t] + (K[— Kp) . e[t — 1].

To ensure a safeguard against too large and too gii&ll,;,, values we impose lower and
upper bounds for th€W,,,;,,. We set these bounds to the defatlit/ 2 andCW,LOF values
specified by the standard, which are 16 and 1024, respectivel\g it B02.11a [13].

The algorithms assume that th@W,,;,, can take any integer value in the6, 1024]
range. However, with our devices only integer powers of 2 are stggpdi.e., CW,nin €

{16,32,...,1024}). Therefore, the value actually used is obtained as:

CW[t] = 2rint(logx(CWminlt))

12 Chapter 3. Implementation Details

wherer i nt (x) is a function that returns the integer value nearest to

To commit the compute@Wconfiguration, first we retrieve the list of privat€OCTLs sup-
ported by the device to search for the call that sets’tHé,,;,,. Once this call has been identified,
we prepare anwr eq data structure with the following information: the interface name, the base-
2 exponent of th&&Wcomputed as above, the access category index as defined by the gtandar
(O for Best Effort) and an additional parameter that identifies if the value isdiet to be used
locally or propagated. For the case of DAC this value is set to 0, aSwWig only intended to the
local card, while for the case of CAC is set to 1, thereby requesting ter do broadcast the new
CWwithin the EDCA Parameter Set element of the next scheduled beacon frame.

Chapter 4

Testbed Description and Validation of
the Implementation

In this chapter we first describe our testbed. Then we analyze the linkiegidetween
each node and the AP and show that our set-up is able to mimic a realistic deptoyitie
significant differences in terms of SNR. Finally, we confirm that, despitedtmstrains imposed
by the devices and the realistic radio conditions, both CAC and DAC are abt&véothe WLAN
to a stable point of operation.

4.1 Testbed Description

Our testbed is located in the Torres Quevedo building at University Cdtlde Madrid. It
consists of 18 devices deployed under the raised floor, a placemeptahates physical protec-
tion as well as radio shielding to some extent (see [21]).

Fig. 4.1 illustrates the location of the nodes. We placed one node (denofde) dswards
the center of the testbed, thus following the placement of an Access Pointalistic deploy-
ment, while the other stations (hnumbered from 1 to 17 in no particular orderjisiributed at
different distances from this node. All nodes are equipped with 5 dBiidineational antennas
and are configured to operate on channel 64 (5.32 GHz) of IEEE B&23tandard [13], where no
other WLANSs were detected. All nodes use the 16-QAM modulation and gagtiheme, which
provides 24 Mbps channel bit rate, as calibration measurements shoatddishwas the highest
rate achievable by the node with the worst link to the AP (node 15). Additignaélydisabled
the RTS/CTS, rate adaptation, turbo, fast frame, bursting and undeldeatlitomatic power save
delivery functionality, as well as the antenna diversity scheme for trasgmiseception.

13

14 Chapter 4. Testbed Description and Validation of the Implementation
o] g
16 ‘ﬁ’ 17 15
5 §
14 13
13 (E
12 (E 1
11 B 6 8
11 2
! 10
S 09 ﬁ
i T AP
08 B
3
07
[() [(
o 8 b b
7 12 1
05
04 B
5
03
()
02 6 10 9 g
8 () (4
y o ﬁ B
A B C D E F G H | J K L M N O P
- 95m >

SNR [dB]

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17
Station index

Figure 4.2: SNR of the links between each node and the Access Point.

Chapter 4. Testbed Description and Validation of the | mplementation

256 fooo o @oooI 000000 0 oloo o ooo@omgoo oooooooloooooooo oloooooooo&
P28 X X000000GOCNNK RO XK+ HOBROBHAN IKHH IR K FHORHHIHH 0K HORKK
£
;E 64 e e v vt o]
O CWmin,2
32 | CWping © -
min,8 .
16 [) | ! \ CWmin,9I)]
> 1 T T T T T
= Pown
S o075} Pops |
Q2 Popt ——
5 p
Q 0.5 R
<
R
£ 0.25 [y, N M AN ENIAN
8 V i M
O 1 1 1 1 1
0 5 10 15 20 25 30
time [s]

Figure 4.3:CW,,;, used by four selected nodes and the estimatgdandp,.., with DAC.

256 [T T T T T]

1218 S-S |
£
;E B4 |+ A A b A R H e+ e e
(@]

32 R

16 i 1 1 1 1 1]

1 T T T T T
E Pobs
S 0.75 Popt — 4
Ke)
o
o 05 g
c
°
(2]
% 0.25 /\ Y ﬁ [\A A [\Mn e AL L f\f\f\/\mA /\ AMAM
S Y vw AL wkuw v\;vvvwwwvu Wv VW VU ww«vvvvwv
0
0 5 10 15 20 25 30

time [s]

Figure 4.4: Announced'W,,;,, and observed collision probability with CAC.

16 Chapter 4. Testbed Description and Validation of the Implementation

Unless otherwise specified, all nodes use the same transmission powef [EZeBm. Given
the node placement of Fig. 4.1, this setting results in very dissimilar link qualitieeeba each
station and the AP (e.g., node 3 is extremely close). To confirm this link heteedy, we de-
signed the following experiment. For a given node, we ran a 10-squong test between the sta-
tion and the AP, recording the SNR values of the received frames asettajrthewi r eshar k
packet analyzérfrom ther adi ot ap header This test was performed on a node-by-node basis,
and repeated for 18 hours. The average and standard deviationSNIEBéor each link are shown
in Fig. 4.2.

From the figure we confirm that the use of a fixed power setting in the cenesidieployment
results in very diverse radio links between the AP and the stations. Notetlihaaghout the
reported experiments, we periodically repeated the above measuremedeirtaconfirm that
the radio conditions did not change.

4.2 Validation of the Algorithms

Our first set of experiments aims at confirming that the good operatiorpiep of CAC and
DAC, obtained analytically and via simulations in [18, 19], are also achievedrgal testbed.
Specifically, we want to confirm that the use of the algorithms results in stebl@vior despite
the described hardware/software limitations and the impairments introducee biahnel con-
ditions, and also assess their resource consumption in terms of CPU andymsage.

Point of operation. We consider a scenario withi = 10 stations, constantly backlogged with
1500 B UDP frames, that send data to the AP ultilizinmer f 3 For the case of the centralized
algorithm (CAC) we log its key variables, namely, tB#&/announced in beacon frames and the
observed collision probability,,s. Both are obtained every 100 ms and depicted in Fig. 4.4.

As the figure shows, CAC drives the WLAN to the desired point of opearatiodeed, the
announced@Woscillates between the two allowed values closest to the optita},;,,, while pyps
fluctuates stably around the desinegl; given by (2.1). We conclude that, despite the hardware
limitations imposed on the values 6Wand the channel impairments, CAC is able to drive the
WLAN to the desired point of operation.

Next we validate the operation of the distributed algorithm (DAC). We condlie same
scenario as before, logging the key parameters of the algorithm at tediom snamelyC' W, 4,
Pown,i @Ndpes ;. IN Fig. 4.3 we depict in the upper subplot the evolution of ¢hé,,;,, used by
four representative nodes (namely 2, 3, 8 and 9), while in the lowel@usp show the collision
probabilities estimated by node 2,{;.2 andp,un,2).

From the two subplots we see that DAC also drives the average collisitalgfiby in the
WLAN to the desired value. However, there is a key difference as cadpar the previous
case: while with CAC all stations use the sa@@/,,,;,, value, with DAC they operate at different
average' ... Indeed, the four stations considered in the experiment use av@iégg,, values
of 92, 300, 92 and 64, respectively. As we will explain in Section 5.2, thigior is caused by
the relative differences in link qualities, already identified above, combaitddthe inability of
the wireless interface to identify the reasons for a packet loss.

'http://wireshark.org

2With ther adi ot ap option, the driver provides additional information about receivethésito user-space appli-
cations, including the signal-to-noise ratio.

Shttp://sourceforge. net/projects/iperf/

17 Chapter 4. Testbed Description and Validation of the Implementation

Resource consumption. In addition to analyzing the performance of CAC and DAC, it is
also important to asses their resource consumption. For this purposealyeea the CPU and
memory usage of the algorithms utilizing thep Linux application, which provides a dynamic
real-time view of a running system. With this tool, we recorded the used sbfties CPU time
and available physical memory with a frequency of 1 sample per secormbamulited the average
usage. CAC, which runs exclusively at the AP, demands on aver&geBHe CPU time and only
1.6% of the physical memory. For the case of DAC, which runs at evetipistéhe average CPU
time consumption is 28%, while the physical memory consumption is 4.3%. Givervitepked
of the nodes’ CPU (233 MHZz) and their reduced physical memory (128, kiBse results show
that both CAC and DAC are suitable for commercial deployments.

Chapter 5

Per for mance Evaluation

We next assess the performance of the algorithms under a large nunuiéera@int scenarios
and compare their performance against the default EDCA configuratiooh we use as a bench-
mark. Each considered experiment runs for 2 minutes and is repeated $Qdimigtain average
values of the measured metrics with good statistical significance.

5.1 UDP Throughput

We first measure the achievable throughput between the nodes and wWieeARll the stations
are transmitting UDP traffic at the same time. Fig. 5.1 plots the average andrstaes&ation of
the total throughput obtained with each mechanism. We observe that the BBf@ait configu-
ration achieves around 11 Mbps, while the use of DAC and CAC resultsénfarmance gain of
approximately 45%. Therefore, we confirm that both approachestdpedy adapting th&’ W
configuration to the number of contending stations, achieve a much hidlogsrefy.

To further examine the performance of the algorithms, we plot the per-sthtionghput in
Fig. 5.2. According to the figure, the use of the EDCA recommended vahtemty provides the
lowest overall throughput figures, but also fails to provide a fairiahasf the available bandwidth.
Indeed, it can be seen that, e.g., the node with the best link quality to the A &) achieves
more than three times the throughput obtained by the station with the pooregtdité {5).

While DAC provides a larger total throughput than EDCA, it does not im@rhe level of
fairness. Actually, it results in a somehappositeperformance as the one obtained with EDCA:
stations that obtained a relatively large bandwidth with EDCA (e.g., node} i3ové obtain a
relatively small bandwidth with DAC. The use of CAC, on the other handviges the best per-
formance both in terms of total throughput and fairness, as it providetéithns with very similar
throughput values.

To quantify the throughput fairness achieved by the considered misal&awe compute the
Jain’s fairness index (JFI) [15]. The resulting JFI values are 0.889,7 and 0.817 for the case of
EDCA, CAC and DAC, respectively. These figures confirm the gooddas properties of CAC,
and shows that DAC and EDCA suffer from a higher level of unfasnagesult that we analyze
next.

18

19

Chapter 5. Performance Evaluation

Total throughput [Mbps]

Individual throughput [Mbps]

20

[EnN
al

=
o

ol

EDCA CAC DAC

Figure 5.1: Total throughput with UDP traffic.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Station index

Figure 5.2: Throughput per station with UDP traffic.

20 Chapter 5. Performance Evaluation

EDCA -+
CAC X
DAC
g 15 et
o
E)
= :
3 1r]
= % G Yo I YD XN
£
()
S
c ,i,,,f,f‘#+,$f* e
& o05fF , % * .
o
O 1 1 1 1 1
30 40 50 60 70
SNR [dB]

Figure 5.3: Throughput obtained vs. SNR.

5.2 Impact of SNR on Throughput

We have seen that link quality impacts the obtained throughput distributionsticuar for
EDCA and DAC. To analyze this impact, we plot in Fig. 5.3 the average UDRugimout per
station vs. the SNR of the link between the station and the AP. Note that foobaiseialization
we also plothatural smoothing splinesver the data points.

From the figure we observe thati) for EDCA there is a noticeable and positive correlation
between SNR and throughputi)for CAC, performance is not much affected by SNR dissimilar-
ities, as significantly better link qualities result in very small throughput imprmrés; (:7) for
DAC there is a large and negative correlation between SNR and throyg¥ifsusmall differences
in terms of SNR causing large differences in terms of throughput.

For the case of EDCA, the positive correlation is caused bygaipture effectWith this effect,
in case of a collision the receiver can decode the packet with the higher &Na result, stations
with better link quality obtain higher throughput. In contrast, the use of CAl0ces the number
of collisions in the WLAN, and therefore the impact of the capture effedgisificantly reduced.

For the case of DAC, the negative correlation is also driven by the eaptiect as follows.
Nodes with high capture probability will experience smaller collision rates tharotthers, and
therefore will havep,..,; smaller tharp,,s ;. This will cause a positive error signal according
to theefairness,i term in (2.7), which will result in larg€’W,,,;,, values. Conversely, nodes with
low capture probability will experience larggs,,, ; values and smaller,,, ; ones, and therefore
will have smallerCW,,;, configurations. In this way, capturing nodes will transmit less often
and therefore will obtain low throughput figures, while the other nodestraitismit more often
and experience a higher throughput. Additional experiments with difféaransmission power
settings, not reported due to space constrains, confirmed that alcageflizationof the link
qualities is able to restore fairness in all cases.

21 Chapter 5. Performance Evaluation

EDCA mmmm
CAC mmmm

Throughput [Mbps]

STA #2 STA #8

Figure 5.4: Performance with hidden nodes.

5.3 Hidden Nodes Scenario

Our adaptive algorithms have been designed for scenarios wherdialhstare in radio range
of each other and coordinate their transmissions by means of carriengeifowever, in real
deployments hidden nodes may be present, and therefore we want thigateesheir behavior
under such circumstances.

To this aim, we ran extensive measurements, selecting different topologiekfferent trans-
mission power settings, to determine the most pathological scenario. Thisiiseabighen node
3 acts as AP, and nodes 2 and 8 act as stations, using a transmissiorigyalvefr 5 dBm. With
this setting, each EDCA station transmitting in isolation (i.e., with the other station siletaine
about 16.3 Mbps of UDP throughput, while if both stations transmit simultahethesthroughput
of each one drops to 1.6 Mbps. Thereby we managed to reproduceemhidde scenario.

We then repeated the experiment with CAC and DAC, and obtained the respltseat! in
Fig. 5.4. We observe that the use of DAC does not improve performamcde®CA. In contrast,
CAC provides a dramatic throughput increase, i.e., more than three timesahghput attained
with the other mechanisms. We conclude that CAC detects the large collisiomdat@mmands
hidden nodes to be less aggressive by announcing a high&y;,,, which lessens (but does not
eliminate) the hidden node problem. On the other hand, a station running DA@ &bte to
overhear MAC (re-)transmissions from hidden nodes, and henawtaorrectly estimate the
collision probability in the network.

54 Impact Network Size

We next evaluate the performance of the algorithms as a function of the noirdiations. To
this aim, we measure the total throughput and JFI for an increasing nuihdemntending nodes,

22 Chapter 5. Performance Evaluation

adding new stations in ascending order of their link quality. We plot the thmouwigand fairness
results in Fig. 5.5 and Fig. 5.6 respectively.

We observe that for both DAC and CAC the total throughput performarmsagbistantially flat,
regardless of the number of stations. This result confirms that both agpme are able to adapt
the CW to the number of stations present in the WLAN.

For the case of EDCA, performance degrades with the number of statich) is the ex-
pected result from the use of a fixed set of (relatively small) contenticempeters. However, for
N > 15 the total throughput performance slightly grows again, a behavior ddysthe capture
effect as the last nodes to be added in our experiments are the onesrsipg better link quali-
ties (nodes 3 and 6). This is confirmed by the fairness values, &6 forl5 there is a drop in the
JFI for the case of EDCA. JFI values also confirm that DAC is more seeagiti heterogeneous
link conditions, as its performance noticeably degrades Withn contrast, with CAC the fairness
index is practically constant for alV values.

5.5 TCP Throughput

We next evaluate performance in a scenarios in which stations use TGiRakiMey evaluating
the throughput and fairness performance when all stations are ctinstacklogged sending TCP
traffic to the AP, replicatindpulky FTP transfers. Note that this scenario is substantially different
from the ones considered in the previous sections, as TCP congesttooltimtroduces a “closed
loop” that can lead to extreme unfairness conditions and even starvafipn [1

We plot in Fig. 5.7 the total throughput values for the three mechanisms. rdiogoto the
results, both CAC and DAC significantly outperform EDCA, improving thigugt by 50% and
40%, respectively.

The per-station throughput distribution is depicted in Fig. 5.8. With EDCA, tderwith the
poorest link quality (node 15) suffers from a large performanceatkgion, this being worse than
inthe UDP case (see Fig. 5.1). The use of DAC with TCP traffic also exateythe unevenness in
the traffic distribution, with node 15 clearly outstanding among the other n@#S results also
present a large deviation, caused by relatively frequent TCP timeautsrfodes with weak radio
link (e.g., node 15). Conversely, CAC yields a remarkable fair and statdeghput distribution.

Like in the UDP case, we compute the JFI values for the resulting througligtributions.
In this case, the values for EDCA, CAC and DAC are 0.787, 0.996 an®Qr&8pectively. We
conclude that, as expected, the performance of EDCA and DAC wovgénd CP, while CAC
preserves its good properties in this scenario.

1The Linux distribution used in our deployment executes the TCP CUBIl@vgl1].

23

Chapter 5. Performance Evaluation

Jain fairness index

Total throughput [Mbps]

18 T T T T T T T T T T T T T T

9 ! ! ! ! ! ! ! ! ! ! ! ! ! !

1 2 3 4 5 6 7 8
Number of stations

9 10 11 12 13 14 15 16 17

Figure 5.5: Total throughput for different number of stations.

0.95

09

0.85

0.8

0.75

o7 -\ 1 11
1 2 3 4 5 6 7 8

Number of stations

Figure 5.6: Fairness for different number of stations.

9 10 11 12 13 14 15 16

17

24 Chapter 5. Performance Evaluation

20 T T T

Total throughput [Mbps]
= [
o (¢}

(¢)
T

0
EDCA CAC DAC
Figure 5.7: Total throughput of FTP-like traffic.
4 T T T T T T T T T T T T T T T T T
EDCA mmmmmm
CAC s
3.5 | DAC 1
=
5 25+ _
Q.
<
(o))
3 2+ _
£
S 15} .
i)
NI F
= } }
05 fl | I I LNl I I

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17
Station index

Figure 5.8: Throughput per station with FTP-like traffic.

25 Chapter 5. Performance Evaluation

5.6 TCP Transfer Delay

We finally consider a scenario involving finite-size TCP connections. Mpezifically, all
stations alternate periods of activity—during which a transmission of 10 MBrse—with silent
periods exponentially distributed with meap\ [1]. We consider three different values far
corresponding to three different levels of activity, namely high, modenatlow. For each case
we ran 1-hour experiments, logging all transfer durations and computingdhstation average
delay. We use hox-and-whiskediagram to illustrate the distribution of the average delay among
nodes: we provide the median, first and third quartiles of the average debaell as its maximum
and minimum values.

Results are depicted in Fig. 5.9. As shown in Fig. 5.9(a), with 1/30 s, which corresponds
to high activity, we see that CAC provides the smallest and most uniform digstibof transfer
delay among nodes, with practically no difference between the best arstl pesforming node.
In case of EDCA, the delay shows a larger median and higher variabilityvekfer, the small
distance between the first and third quartiles shows that most of the statipeseace similar
performance. Finally, for the case of DAC, despite the median is similar to thefd@AC, results
show a much larger dispersion.

As can be seen in Fig 5.9(b), when the traffic activity is moderate (1/60 s), the absolute
values decrease, but the relative results are similar, i.e., CAC providasthg smallest and most
uniform delays among nodes. Finally, as depicted in Fig 5.9(c), when thétyaof the nodes
is low (A = 1/90 s), medians are very similar, but CAC still provides the most fair distribution
of the transfer delays. From these experiments, we conclude that CAQugides the best
performance under dynamic traffic scenarios.

In order to provide a better and more intuitive feeling of what is going on witméntestbed
during these measurements, we report in Fig. 5.10 the duration of eachrigéer for all the three
mechanisms (reported only for the case\of 1/30 s without loss of generality). Specifically,
in Fig. 5.10(a) we can observe that EDCA, as expected, favors trefdrarof those nodes which
experience better channel conditions (i.e., node 3, 6), whereas =hiase initiated from nodes
experiencing poor link qualities (e.g., node 15). In Fig. 5.10(b) instead¢am graphically ap-
preciate how CAC equally shortens the transfer time without any remarkabiection among
nodes. Finally, in Fig. 5.10(c) we can observe how DAC favors noddsrelatively low SNR
(e.g., nodes 15, 16), while nodes with good channel conditions almogé skering able to com-
plete only a few transfers (i.e., node 3, 6). Moreover, given a fixetinthe large variability of
file transfer duration reflects a higher level of unpredictability which waseat with the other
mechanisms. In fact, results obtained with DAC suffer from a larger digperas enlightened by
the broad standard deviations shown in Fig. 5.9. In our experiments veevelsthat this highly
variable file transfer duration, as well as the TCP throughput, is due tedfednt occurrence of
TCP timeouts at nodes with weak connectivity, which are also the nodesthsingpst aggressive
CWmin when DAC is adopted.

26

Chapter 5. Performance Evaluation

Transfer time [s]

Transfer time [s]

Transfer time [s]

EDCA
DAC
600
500
400
300
200
100 -
0
@ A=1/30s
300
EDCA mmmm
CAC
DAC
200
100 -
—_—
0
(b) A=1/60s
60
EDCA mmmm
CAC
DAC
50
40
30
20
10 +
0
) A=1/90s

Figure 5.9: TCP delay performances.

27

Chapter 5. Performance Evaluation

Station ID

Station ID

Station ID

Figure 5.10: Upload tranfers duration for the three mechanisms /30 s).

P NWHAOOO N O P NWHAOOON©O

P NWSAOOON®O

T T T T T T T T
b i i i A o

b

—— — g

F o i — i A —— i ——

L — — 4
b — i Al — —— H——— o
FH i A i i) i — o
b i —— Al —— —— —— ——

Fo—— —

— b —— o

B 1

o — —

i
FooH A HHH O HHHH HHHH RS A A o

o — —— b ———— ———

A — —

—— g

b HHHH HH

HH HHHHHHHH HHHH H HH H H o

b b — i ————

A — —— g

0 500 1000 1500 2000 2500 3000 3500
time [s]
(a) EDCA
FooH H A HEHA A H -

B A H A A H R o

FH I

i H HHHH o
- H b I i o e H I H I e o
B A HH H HH e o A o
F o H HEH A A R A B H o
FH HHAA HH HH D H R o
F o A I H A e o
F HA A H i H A e o
B I A I H HH HH o

F o H = HH

HH H—H o
FHEHH HEHRHH AR HEAHE S HEHEH HHH SR o
FH I I i e e H e e o
F i I e A S H e o
I H I HH R H A e H H H o
B HHH HH A I e R H o

FoHAH A HH HH A o H I H o

0 500 1000 1500 2000 2500 3000 3500
time [s]
(b) CAC
F —— — -

[HH HEHHHH HHOHHHEHHEHHHHHHE HHHH H HAHHH B HHHH HREEE HH B o
[H HHHH HHHHH HHHHH HEHHEH HHEH HOHHHH HOH HEHH HOHHHHHHHHH B H B
F o i i HEH H A i ———— —HH H H— o
b H—H b i H e H——H HHH -

F—— g

= H— —— ——A A A ———— ———————— o
[HH HHHH HH HH O HH HHH HHHH O FHHHHHH B K HH HOH HH HHH HEHHH O R o
F HHHHHHHAHH HHH— A H—H HH I HH B o
B H o HA ——— ——t—— —— i HH A —— i —i— o

b i i i H) H HHHH A R H o

F o HH O

Hi— o

F H H i H HHHA— H I H HHHH HHE—EH HH H HH B

[HHH H HHHHHHH HHH I H O H A EHBH S R B - —HEH o

F HHHHH HHAH HE— HH HEH HH B HEH HHH HH H o

0 500 1000 1500 2000 2500 3000 3500
time [s]

(c) DAC

uploads
24
24
10
19
25
22
25
22
23
25
22
38
23
21
44
22
25

uploads
36
36
36
38
32
37
33
36
35
33
37
37
37
38
38
34
33

uploads
20
56
61
29
29
14
20
59
46
25
33
4
30
41
4
52
37

Chapter 6

Related Work

The scientific literature offers many examples of MAC optimization approaciMemy of
them are based on a centralized entity, responsible for monitoring systéompance and adapt-
ing the system parameters to current conditions. Other works focus toibbutisd approaches to
adapt MAC parameters. Very little experimental work is available, and it isdbas complex
algorithms, non-standard functionality and small-sized networks. In thenfioigpwe review the
most significant contributions in each of these areas and describe tekynafvour work.

Centralized approaches. A significant number of approaches exists in the literature [16, 8,
18, 22] that use a single node to compute the set of MAC parameters to dénube WLAN.
With the exception of our CAC algorithm [18], the main drawbacks of thepeogghes are that
they are either based on heuristics, thereby lacking analytical sugpagtdviding performance
guarantees [16, 8], or they do not consider the dynamics of the WLAdurealistic scenarios
[22].

Distributed approaches. Several works [24, 17, 4, 5, 12] have proposed mechanisms that
independently adjust the backoff operation of each stations in the WLABInTain disadvantages
of these approaches are that they change the rules of the IEEE 8@2ntthrsl and therefore
require introducing significant hardware or firm-ware modifications.

Implementation experiences. Very few schemes to optimize WLAN performance have been
developed in practice [22, 9, 2]. While the idea behind Idle Sense [12jriy Kimple, its im-
plementation [9] entails a significant level of complexity, introducing tight timingst@ins that
require programming at the firmware level. The same limitation holds for the agipraf [2],
which introduces changes to the MAC protocol that require redesigifitigeavhole NIC imple-
mentation. Finally, the work of [22] does not propose or evaluate amytadaalgorithm to adapt
the C'W but just evaluates the performance of static configurations. Additiondllpf shese
works rely on testbeds substantially smaller than ours.

28

Chapter 7

Conclusions

In this thesis, we prototyped two adaptive mechanisms capable of tuningritention win-
dow along the network conditions. In contrast to other proposals whiphineecomplex mod-
ifications, these mechanisms rely on standard functionalities already segbfxgr COTS hard-
ware/firmware, and do not introduce any extension to the IEEE 802.11.M¥&extensively
evaluated the performances of the two mechanisms in a 18-nodes testhsidledog a wide
spectrum of network conditions. With our experimental study we identifiekelydimitations
of the distributed scheme, inherent to realistic scenarios, and we confilmaethe centralized
mechanism significantly improves network throughput, transfer delayamkss under a broad
variety of circumstances, including the pathological case of hidden nodes

A major conclusion from our work is that, by simply adding a few lines of cadihe AP
to exploit the functionality readily available, we can achieve performanceowepnents of up to
50%. We do believe that the results drawn herein advocate a widesplejpiiba of the central-
ized mechanism. Finally, we also think that a centralized scheme should beédopfuture
proposals design, while a distributed approach is nothing but a negéalilaack for those cases
in which any node has a centralized and complete view of the network.

29

References

[1]

(2]

3]

[4]

[5]

[6]

[7]

P. Barford and M. E. Crovella. Generating representative welklwads for network and
server performance evaluation.Pmoceedings of ACM SIGMETRIGSages 151-169, 1998.

R. Bernasconi, S. Giordano, A. Puiatti, R. Bruno, and E. Gredoeisign and Implementa-
tion of an Enhanced 802.11 MAC Architecture for Single-Hop Wireless Nekst EURASIP
Journal on Wireless Communications and Network2@Q7.

G. Bianchi. Performance analysis of the IEEE 802.11 distributeddioation function.
IEEE Journal on Selected Areas in Communicatjdri&3):535-547, Mar 2000.

L. Bononi, M. Conti, and E. Gregori. Runtime optimization of ieee 802.1%klgss lans
performance. IEEE Transactions on Parallel and Distributed Systerh$(1):66—-80, Jan.
2004.

F. Cali, M. Conti, and E. Gregori. IEEE 802.11 protocol: design agidgrmance evaluation
of an adaptive backoff mechanismMEEE Journal on Selected Areas in Communicatjons
18(9):1774-1786, Sept. 2000.

L. Chen, S. H. Low, and J. C. Doyle. Joint congestion control aratlia access control
design for wireless ad hoc networks. Rioc. IEEE INFOCOM Miami, Florida, march
2005.

L. Chen, S. H. Low, and J. C. Doyle. Random access game and medicess control desig.
IEEE Transactions on Networkin@8(4):1063—6692, dec. 2010.

[8] J. Freitag, N. L. S. da Fonseca, and J. F. de Rezende. Tun8tdf1le Network Parameters.

IEEE Communications Letter$0(8):611-613, 2006.

[9] Y. Grunenberger, M. Heusse, F. Rousseau, and A. Dudaerieqre with an implementation

[10]

[11]

of the Idle Sense wireless access methodProceedings of the ACM CoNEXT conference
pages 1-12, New York, New York, 2007.

0. Gurewitz, V. Mancuso, J. Shi, and E. Knightly. Measuremedtrandeling of the origins
of starvation of congestion-controlled flows in wireless mesh netwdESE Transactions
on Networking17(6), dec. 2009.

S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-spé& CP variant. ACM
SIGOPS Operating Systems Revié:64—74, July 2008.

30

31 REFERENCES

[12] M. Heusse, F. Rousseau, R. Guillier, and A. Duda. Idle senseptmal access method
for high throughput and fairness in rate diverse wireless LANPrbc. ACM SIGCOMM
pages 121-132, Philadelphia, PA, USA, 2005.

[13] IEEE 802.11. Supplement to Wireless LAN Medium Access Control and Physical Layer
specifications: high-speed physical layer in the 5 GHz bdB&E Std 802.11a, 1999.

[14] IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
SpecificationsRevision of IEEE Std 802.11-1999, 2007.

[15] R. Jain, Chiu, D.M., and W. Hawe. A Quantitative Measure of Fasraesl Discrimination
for Resource Allocation in Shared Systerbd=C Research Report TR-3011984.

[16] A. Nafaa, A. Ksentini, A. A. Mehaoua, B. Ishibashi, Y. Iragi,daR. Boutaba. Sliding Con-
tention Window (SCW): Towards Backoff Range-Based Service Qiffgéation over IEEE
802.11 Wireless LAN NetworkdEEE Network 19(4):45-51, Jul 2005.

[17] Q. Ni, I. Aad, C. Barakat, and T. Turletti. Modeling and Analysis & CW Decrease for
IEEE 802.11 WLAN. InProc. IEEE Personal, Indoor, and Mobile Radio Communications
Conference (PIMRG)Beijing, 2003.

[18] P. Patras, A. Banchs, and P. Serrano. A Control Theoreticdgah for Throughput Opti-
mization in IEEE 802.11e EDCA WLANsMobile Networks and Applications (MONET)
14(6):697-708, Dec 20009.

[19] P. Patras, A. Banchs, P. Serrano, and A. Azcorra. A Cofitneloretic Approach to Dis-
tributed Optimal Configuration of 802.11 WLANSEEE Transactions on Mobile Comput
ing, 10(6):897-910, Jun 2011.

[20] L. Scalia, I. Tinnirello, J. Tantra, and C. H. Foh. Dynamic MAC Paegers Configuration
for Performance Optimization in 802.11e Networks Pioc. GLOBECOMpages 1-6, San
Francisco, CA, USA, Dec 2006.

[21] P. Serrano, C. J. Bernardos, A. de la Oliva, A. Banchs, to,Sand M. Zink. FloorNet:
Deployment and Evaluation of a Multihop Wireless 802.11 Testli&dRASIP Journal on
Wireless Communications and Networki2@10.

[22] V. A. Siris and G. Stamatakis. Optimal CWmin selection for achieving prtopal fairness
in multi-rate 802.11e WLANS: test-bed implementation and evaluationPréteedings
of the 1st international workshop on Wireless network testbeds, exgaairevaluation &
characterizationpages 41-48, Los Angeles, CA, USA, 2006.

[23] Q. Xia and M. Hamdi. Contention Window Adjustment for IEEE 802.11 VWA A
Control-Theoretic Approach. IRroc. International Conference on Computer Communi-
cations (ICC) Istanbul, Turkey, Jun 2006.

[24] Y. Yang, J. J. Wang, and R. Kravets. Distributed Optimal Contentiandd¥v Control
for Elastic Traffic in Single-Cell Wireless LANs .IEEE Transactions on Networking
15(6):1373-1386, Dec 2007.

