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Abstract

In 802.11 WLANs, the dynamic adaptation of the contention parameters along network condi-
tions results in relevant performance improvements. Despite the ability to change these parameters
has been available in standard devices for years, no adaptive mechanism using this functionality
has been validated in a realistic deployment so far.

In our work, we report our experiences related to the implementation and evaluation of two
adaptive algorithms based on control theory, one centralized and one distributed, in a large-scale
testbed consisting of eighteen commercial off-the-shelf devices. We conduct extensive measure-
ments under non-ideal channel condition, considering the impact of different network scenarios in
terms of number of active nodes and traffic generated. We show that bothalgorithms significantly
outperform the standard configuration in terms of total throughput. We alsoexpose the limita-
tions inherent to distributed schemes, and demonstrate that the centralized approach substantially
improves performance under a broad variety of scenarios, which confirms its suitability for real
deployments.

i



Table of Contents

1 Introduction 1

2 Background 3
2.1 IEEE 802.11 EDCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Optimal Point of Operation of the WLAN . . . . . . . . . . . . . . . . . . . . . 4
2.3 Centralized Adaptive Control Algorithm . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Distributed Adaptive Control Algorithm . . . . . . . . . . . . . . . . . . . . . . 6

3 Implementation Details 9
3.1 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Estimation of pobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Estimation of pown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Contention Window Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Testbed Description and Validation of the Implementation 13
4.1 Testbed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Validation of the Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Performance Evaluation 18
5.1 UDP Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Impact of SNR on Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5.3 Hidden Nodes Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Impact Network Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.5 TCP Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.6 TCP Transfer Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Related Work 28

7 Conclusions 29

References 30

ii



List of Figures

2.1 Retry flag marking upon collisions. . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 CAC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 DAC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 CAC and DAC implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Deployed testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 SNR of the links between each node and the Access Point. . . . . . . . . . .. . 14
4.3 CWmin used by four selected nodes and the estimatedpobs andpown with DAC. . 15
4.4 AnnouncedCWmin and observed collision probability with CAC. . . . . . . . . 15

5.1 Total throughput with UDP traffic. . . . . . . . . . . . . . . . . . . . . . . . . .19
5.2 Throughput per station with UDP traffic. . . . . . . . . . . . . . . . . . . . . .. 19
5.3 Throughput obtained vs. SNR. . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
5.4 Performance with hidden nodes. . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.5 Total throughput for different number of stations. . . . . . . . . . . . .. . . . . 23
5.6 Fairness for different number of stations. . . . . . . . . . . . . . . . . . .. . . . 23
5.7 Total throughput of FTP-like traffic. . . . . . . . . . . . . . . . . . . . . . .. . 24
5.8 Throughput per station with FTP-like traffic. . . . . . . . . . . . . . . . . . .. . 24
5.9 TCP delay performances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
5.10 Upload tranfers duration for the three mechanisms (λ = 1/30 s). . . . . . . . . . 27

iii



Chapter 1

Introduction

The IEEE 802.11 standard for Wireless LANs [14] has become one of themost commonly
used technologies to provide broadband connectivity to the Internet. Thedefault channel access
mechanism employed in IEEE 802.11 networks is based on a CSMA/CA scheme,regulated by
a set of parameters that determines the aggressiveness of the stations when trying to access the
channel. In particular, the contention window (CW ) parameter controls the probability that a
station defers or transmits a frame once the medium has become idle, and therefore has a key
impact on the WLAN performance.

Commercial devices implement a fixedCW configuration, which is known to yield suboptimal
performance. Indeed, for a fixedCW , if too many stations contend the collision rate will be very
high, while if few stations are backlogged the channel will be underutilized most of the time. This
behavior has been analyzed by several works in the literature, e.g. [3], which have shown that
adapting theCW to the number of backlogged stations significantly improves performance.

Following the above result, an overwhelming number of solutions have proposed to adapt
the 802.11 MAC behavior to the observed network conditions with the goal ofmaximizing the
WLAN performance [8, 20, 12, 16, 24, 23, 17, 22, 2, 6, 7]. However, as we detail in the
related work chapter, these previous works suffer from at least oneof these two limitations:
(i) their performance has not been assessed with real deployments, and therefore lack experi-
mental evidences gathered from scenarios with non-ideal channel effects and implementation con-
straints [8, 20, 16, 24, 23, 17, 6, 7]; or (ii) they rely on non-standard capabilities, or functionality
that is not supported by existing wireless devices, and therefore would require complex modifica-
tions to be implemented [8, 12, 16, 22, 2, 6, 7]. Furthermore, most of them are based on heuristics
and lack the mathematical foundations to guarantee optimal performance [8, 20, 12, 16, 2].

In this thesis we present our experiences with the implementation of two adaptive algorithms,
namely theCentralized Adaptive Control(CAC) [18] and theDistributed Adaptive Control(DAC)
[19], both based on a Proportional Integrator (PI) controller that dynamically tunes theCW con-
figuration to optimize performance. In contrast to previous proposals, both algorithms are sup-
ported by solid theoretical foundations from control theory and can be easily implemented with
unmodified existing devices.

We first provide a detailed description of the implementation of our adaptive mechanisms,
which run as user space applications and rely on standardized system calls to estimate the con-
tention level in the WLAN and adjust theCW configuration of 802.11 stations. We also provide
insights into the differences between the theoretical design and the practical implementation of the
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2 Chapter 1. Introduction

algorithms, caused by the inherent limitations of the real devices. Furthermore, we demonstrate
the feasibility of utilizing these algorithms with commercial off-the-shelf (COTS) hardware and
open-source device drivers.

By conducting exhaustive experiments in a large-scale testbed consisting of 18 devices, we
evaluate the performance of our proposals under non-ideal channeleffects and different traffic
conditions. Additionally, we compare the performance of our algorithms against the default IEEE
802.11 configuration, and identify those scenarios where a network deployment can benefit from
using such adaptive algorithms.

Our results confirm that both approaches outperform the standard’s default scheme, improving
the performance by up to 50%. Our experiments also reveal that the distributed algorithm suffers
from a number of problems with heterogeneous radio links, which are inherent to its distributed
nature and the limitations of the wireless interfaces. In contrast, the centralized scheme exhibits
remarkable performances under a wide spectrum of network conditions.The conclusions drawn
from our analysis prove the feasibility of using adaptive MAC mechanisms in realistic scenarios
and provide valuable insights for their design.

The remainder of the thesis is organized as follows. Chapter 2 summarizes theIEEE 802.11
EDCA protocol and the underlying principles of CAC and DAC. In Chapter 3we report details
about the implementation of the functionality comprised by the proposed schemes. Chapter 4 de-
scribes our testbed and the validation of the implementation of the algorithms. Chapter 5 presents
a thorough experimental study of the algorithms in a broad set of network conditions. Finally,
Chapter 6 summarizes the related work and Chapter 7 concludes the work.



Chapter 2

Background

This chapter briefly summarizes the behavior of IEEE 802.11 EDCA mechanisms and the
ideas on which the two adaptive protocols implemented and assessed here are based on.

2.1 IEEE 802.11 EDCA

The IEEE 802.11 Enhanced Distributed Channel Access (EDCA) mechanism is a CSMA/CA-
based protocol that operates as follows. As depicted in Fig. 2.1, upon theavailability of a frame
to be transmitted, a station is allowed to send it on air only after having sensed thechannel idle
for a period of time equal to the arbitration interframe space parameter (AIFS). Otherwise, if
the channel is found busy (either immediately or during theAIFS period), the station continues
to monitor the medium until it is sensed idle for anAIFS interval, and then enters in a backoff
process.

Upon starting the backoff process, a station computes a random integer uniformly distributed
in the range[0, CW −1], and initializes its backoff time counter with this value. TheCW value is
called the contention window, and depends on the number of failed transmission attempts. For the
first transmission attempt the minimum contention window (CWmin) is used. In case of a colli-
sion, its value doubles, up to a maximum valueCWmax. The backoff time counter is decremented
once every time slot if the channel is sensed idle and frozen when an ongoing transmission is de-

Figure 2.1: Retry flag marking upon collisions.
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4 Chapter 2. Background

tected on the channel. Finally, when the backoff time counter reaches zero, the station transmits
its frame in the next time slot.

When two or more stations start transmitting simultaneously, a collision occurs. Acknowledg-
ment (ACK) frames are used to notify a transmitting station of successfully received frames. In the
case of a failed transmission, the station doubles itsCW and executes the backoff process again.
Once a frame has been successfully transmitted or the retry limit has been exceeded,CW is set
again toCWmin. To prevent duplicates, the standard provides a retry flagR in order to mark those
frames that are being retransmitted, i.e., the flag is set to 0 on the first transmission attempt, and set
to 1 on every subsequent retransmission (see Fig. 2.1). As we discuss later, our algorithms exploit
this functionality to infer the network conditions and adapt theCW of the stations accordingly.

To support service differentiation, EDCA implements different access categories (ACs) at ev-
ery station, each having a different backoff configuration. The parameters of each AC are an-
nounced by the Access Point using the Beacon Frames. In the rest of thetractation we do not
consider service differentiation and assume that all stations only execute the Best Effort AC.

2.2 Optimal Point of Operation of the WLAN

Both CAC and DAC share the goal of adjusting theCW to drive the WLAN to the optimal
point of operation that maximizes the total throughput given the observed network conditions. Let
p denote the probability that a transmission attempt collides. Following [3], we have shown in
[18, 19] that the optimal collision probability in the WLANpopt can be approximated by

popt ≈ 1− e
−

√

2Te
Tc , (2.1)

whereTe is the duration of an idle slot (a PHY layer constant) andTc is the average duration of
a collision. Therefore,popt does not depend on the number of stations, but only on the average
duration of a collisionTc. Given the average lengthE[L] of the longest packet involved in a
collisions,Tc can be computed using

Tc = TPLCP +
E[L]

C
+ EIFS.

whereTPLCP is the duration of the Physical Layer Convergence Protocol (PLCP) preamble and
header,C is the modulation rate andEIFS is a PHY layer constant.

2.3 Centralized Adaptive Control Algorithm

TheCentralized Adaptive Control(CAC) algorithm [18], illustrated in Fig. 2.2, is based on a
PI controller located at the Access Point (AP). This controller computes theconfiguration of the
CWmin parameter, whileCWmax is set asCWmax = 2mCWmin in order to benefit from the fea-
tures of the binary exponential backoff algorithm (withm being set as in the default configuration,
which ism = 6 for IEEE 802.11a).

Following the above, the controller performs two tasks every beacon interval (approx. 100 ms):
(i) it estimates the current point of operation of the WLAN as given by the observed collision
probabilitypobs, and (ii) based on this estimation andpopt, it computes theCW configuration to
be used during the next beacon interval and sends it to the stations in a beacon frame.
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Figure 2.2: CAC algorithm.

The computation ofpobs is based on the observation of the retry flag of successful frames. Let
us denote byR1 (R0) the number of observed frames with the retry bit set (unset) during a beacon
interval. Assuming that no frames exceed the retry limit given by theMAX RETRY parameter,1

and that transmissions attempts collide with a constant and independent probability,2 the observed
probability of a collision in the WLAN can be estimated with (see [18]):

pobs =
R1

R0 +R1
. (2.2)

The error signale fed into the PI controller to calculate the newCWmin is computed as the
difference between the observed collision probabilitypobs and the target valuepopt:

e = pobs − popt. (2.3)

In this way, when the observed collision probability is above the target value, the error signal
will be positive and trigger an increase of theCWmin, and consequently a decrease of the collision
rate in the next beacon interval. Similarly, when the collision probability is below the target value,
CWmin is decreased in order to increase the activity on the channel.

The {KP ,KI} parameters of the PI controller are obtained using the Ziegler-Nichols rules,
to achieve a proper trade-off between stability and speed of reaction to changes, and are given by
(see [18] for the details):















KP = 0.8
p2opt(1+popt

∑m−1

k=0
(2popt)k)

;

KI = 0.4
0.85·p2opt(1+popt

∑m−1

k=0
(2popt)k)

.

(2.4)

The operation of CAC is summarized in Algorithm 1.

1Note that this assumption is accurate as in an optimally configured WLAN the collision probability is very low.
2This assumption has been widely used and shown to be accurate, see e.g. [3].
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Algorithm 1 Centralized Adaptive Control algorithm.
1: while truedo
2: repeat
3: if new frame sniffedthen
4: retrieve retry flag
5: if retry flag is setthen
6: IncrementR1

7: else
8: IncrementR0

9: end if
10: end if
11: until new beacon interval
12: computepobs[t] using (2.2)
13: e[t] = pobs[t]− popt
14: CWmin[t] = CWmin[t− 1] +KP · e[t]+
15: +(KI −KP ) · e[t− 1]
16: send beacon with newCW configuration
17: end while

2.4 Distributed Adaptive Control Algorithm

TheDistributed Adaptive Control(DAC) algorithm [19] employs an independent PI controller
at each station to compute itsCW configuration, to drive the overall collision probability to the
target valuepopt. As illustrated in Fig. 2.3, each controller computes theCWmin value employed
by its Network Interface Card (NIC), based on the locally observed network conditions. Similarly
to CAC,CWmax is set asCWmax = 2mCWmin.

While with centralized approaches all stations use the same configuration provided by a single
entity, and therefore fairly share the channel, with distributed approaches this is not necessarily
the case. To guarantee a fair throughput distribution, the error signal utilized in DAC consists of
two terms: one to drive the WLAN to the desired point of operation, and another one to achieve
fairness between stations. More specifically, the error signal at stationi is given by

ei = ecollision,i + efairness,i. (2.5)

The first term of (2.5) ensures that the collision probability in the network is driven to the
target value:

ecollision,i = pobs,i − popt, (2.6)

wherepobs,i denotes the collision probability as measured by stationi. When the collision prob-
ability observed by stationi is larger than the target value, the above term yields a positive error
that increases theCW of stationi, thereby reducing the collision probability.

The second term of (2.5) is computed as

efairness,i = pobs,i − pown,i, (2.7)

wherepown,i is the collision probability experienced by stationi. The purpose of this second
component ofei is to drive theCW of all stations to the same value. Indeed, the higher the
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Figure 2.3: DAC algorithm.

CWmin, the lower the number of collisions caused, and thereby, the lower the observed collision
probabilitypobs,i is. Therefore, a station will increase itsCWmin if it experiences less collisions
than the others.

To compute the error signal, each station needs to measurepobs,i andpown,i. The former is
computed aspobs in CAC. For the computation ofpown,i, we rely on the following statistics which
are readily available from wireless cards: the number of successful transmission attemptsT and
the number of failed attemptsF . With these statistics,pown,i is computed as:

pown,i =
F

F + T
. (2.8)

Each station will estimatepobs,i andpown,i and compute the error signalei, which is provided
to the PI controller for the computation of the newCWmin,i. Like in CAC, we choose to trigger an
update of theCWmin,i every beacon interval, as this is compatible with existing 802.11 hardware,
which is able to update the EDCA configuration at the beacon frequency.

Although the analysis of DAC, based on multivariable control theory, significantly differs
from the analysis of CAC, based on standard control theory, the{KP ,KI} parameters that each
station uses are the same ones of (2.4), as proved in [19]. The DAC operation is summarized in
Algorithm 2.
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Algorithm 2 Distributed Adaptive Control algorithm.
1: while truedo
2: repeat
3: if new frame sniffedthen
4: retrieve retry flag and
5: incrementR0 orR1 accordingly
6: end if
7: until beacon received
8: computepobs,i using (2.2)
9: fetchT andF from driver stats

10: computepown,i using (2.8)
11: e[t] = 2 · pobs,i[t]− pown,i[t]− popt
12: CWmin[t] = CWmin[t− 1] +KP · e[t]+
13: +(KI −KP ) · e[t− 1]
14: update the localCW configuration
15: end while



Chapter 3

Implementation Details

A major advantage of CAC and DAC is that they are based on functionalities already available
in IEEE 802.11 devices, and therefore can be implemented with COTS hardware. In this chapter,
we describe the hardware used in our deployment and the implementation of thefunctionality
required by CAC and DAC.

3.1 Implementation Overview

We have implemented our algorithms using Soekris net4826-48 devices.1 These are low-
power, low-costs computers equipped with 233MHz AMD Geode SC1100 CPUs, 2 Mini-PCI
sockets, 128 Mbyte SDRAM and 256 Mbyte compact flash circuits for data storage. To accom-
modate the installation of current Linux distributions, we have extended the storage capacity of the
boards with 2 GB USB drives. As wireless interfaces, we used Atheros AR5414-based 802.11a/b/g
devices.

As software platform we installed Gentoo Linux OS (kernel 2.6.24) and the popular MadWifi
open-source WLAN driver2 (version v0.9.4), which we modified as follows: (i) we enabled the
dynamic setting of the EDCA parameters for the best effort access category, which is in line with
the standard specifications but disabled by default in the driver, (ii) we overwrote the drivers’
EDCA values for the best-effort traffic with the standard recommended ones [14], and (iii) for the
case of DAC we modified the driver to enable the stations to employ the locally computed EDCA
configuration using standardized system calls (as described in Section 3.4). The source code of
the modified drivers and our implemented prototypes is available online.3

Fig. 3.1 illustrates the main modules of our implementation of CAC and DAC. The algo-
rithms do not require introducing modifications to the hardware/firmware nor have tight timing
constraints, and therefore they can run as user-space applications that communicate with the driver
by means ofIOCTL calls. We also take advantage of the ability of the MadWifi driver to support
multiple virtual devices using different operation modes (master/managed/monitor) with a single
physical interface. In the following we detail the implementation of the different modules.

1http://www.soekris.com/
2http://madwifi-project.org/
3http://www.hamilton.ie/ppatras/\#code
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Figure 3.1: CAC and DAC implementations.

3.2 Estimation of pobs

Both algorithms require to estimate the collision probability observed in the WLAN. For the
case of CAC this is performed only at the AP and results inpobs, while for the case of DAC this is
performed independently at each stationi and results inpobs,i. The estimators are computed with
(2.2), which relies on observing the retry flag of the overheard frames.We next explain how these
values are obtained from a practical perspective.

To overhear frames, we utilize a virtual device operating in the so calledmonitor mode
with promiscuous configuration. With this configuration, the device passes all traffic to user-space
applications, including frames not addressed to the station. We also configure the device to pass
the received frames with full IEEE 802.11 link layer headers, such that the Frame Control field of
the frames (where the retry flag resides) can be examined.

With this set-up, the algorithms open araw socket to the driver, which enables the reception of
Layer 2 frames. Through this socket the algorithms listen for transmitted frames and process their
headers in an independent thread (the “Frame Sniffer” module of Fig. 3.1). For every observed
frame, one of the counters used in the estimation of the collision probability is incremented:R0 if
the retry flag was unset,R1 if the retry flag was set. Every beacon interval the computation ofpobs
or pobs,i using (2.2) is triggered, and then the counters are reset to zero.

3.3 Estimation of pown

In addition to the observed collision probabilitypobs,i, the DAC algorithm requires to estimate
the experienced collision probabilitypown,i. We perform this computation in the “Statistics Col-
lector” module of Fig. 3.1 using information recorded by the wireless driver. More specifically, at
the end of a beacon interval we open a communication channel with the driver instance, config-
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ured inmanaged mode, and perform aSIOCGATHSTATS IOCTL request. Upon this request,
the driver populates anath stats data structure, which contains detailed information about the
transmitted and received frames since the Linux kernel has loaded the driver module. Out of the
statistics retrieved, the records that are of particular interest for our implementation are:

• ast tx packets: number of unique frames sent to the transmission interface.

• ast tx noack: number of transmitted frames that do not require ACK.

• ast tx longretry: number of transmission retries of frames larger than the RTS thresh-
old. As we do not use the RTS/CTS mechanisms, this is the total number of retransmissions.

• ast tx xretries: number of frames not transmitted due to exceeding the retry limit,
which is set by theMAX RETRY parameter.

To computepown,i we need to count the number of successful transmissions and the number
of failed attempts. To compute the former, we subtract from the number of unique frames those
that are not acknowledged (e.g., management frames) and those that were not delivered,

Successes= ast tx packets − ast tx xretries − ast tx noack.

Similarly, to compute the number of failed attempts, out of the total number of retransmissions we
do not count those retransmissions caused by frames that were eventually discarded because the
MAX RETRY limit was reached, therefore,

Failures= ast tx longretry − ast tx xretries · MAX RETRY.

With the above, the termsF andT of (2.8) used to estimatepown,i are computed as

F[t] = Failures[t] - Failures[t-1],
T[t] = Successes[t]- Successes[t-1],

wheret denotes the time of the current beacon interval andt− 1 the previous one.

3.4 Contention Window Update

With the estimated collision probabilities, CAC and DAC compute the error signal atthe end
of a beacon interval according to (2.3) and (2.5), respectively. Depending on this value, the PI
controller triggers an update of theCWmin to be used in the next beacon intervalt, according to
the following expression:

CWmin[t] = CWmin[t− 1] +KP · e[t] + (KI −KP ) · e[t− 1].

To ensure a safeguard against too large and too smallCWmin values we impose lower and
upper bounds for theCWmin. We set these bounds to the defaultCWDCF

min andCWDCF
max values

specified by the standard, which are 16 and 1024, respectively, for IEEE 802.11a [13].
The algorithms assume that theCWmin can take any integer value in the[16, 1024]

range. However, with our devices only integer powers of 2 are supported (i.e.,CWmin ∈
{16, 32, . . . , 1024}). Therefore, the value actually used is obtained as:

CW [t] = 2rint(log2(CWmin[t])).
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whererint(x) is a function that returns the integer value nearest tox.
To commit the computedCW configuration, first we retrieve the list of privateIOCTLs sup-

ported by the device to search for the call that sets theCWmin. Once this call has been identified,
we prepare aniwreq data structure with the following information: the interface name, the base-
2 exponent of theCW computed as above, the access category index as defined by the standard
(0 for Best Effort) and an additional parameter that identifies if the value is intended to be used
locally or propagated. For the case of DAC this value is set to 0, as theCW is only intended to the
local card, while for the case of CAC is set to 1, thereby requesting the driver to broadcast the new
CW within the EDCA Parameter Set element of the next scheduled beacon frame.



Chapter 4

Testbed Description and Validation of
the Implementation

In this chapter we first describe our testbed. Then we analyze the link qualities between
each node and the AP and show that our set-up is able to mimic a realistic deployment with
significant differences in terms of SNR. Finally, we confirm that, despite theconstrains imposed
by the devices and the realistic radio conditions, both CAC and DAC are able todrive the WLAN
to a stable point of operation.

4.1 Testbed Description

Our testbed is located in the Torres Quevedo building at University Carlos III de Madrid. It
consists of 18 devices deployed under the raised floor, a placement thatprovides physical protec-
tion as well as radio shielding to some extent (see [21]).

Fig. 4.1 illustrates the location of the nodes. We placed one node (denoted asAP) towards
the center of the testbed, thus following the placement of an Access Point in arealistic deploy-
ment, while the other stations (numbered from 1 to 17 in no particular order) are distributed at
different distances from this node. All nodes are equipped with 5 dBi omnidirectional antennas
and are configured to operate on channel 64 (5.32 GHz) of IEEE 802.11a standard [13], where no
other WLANs were detected. All nodes use the 16-QAM modulation and coding scheme, which
provides 24 Mbps channel bit rate, as calibration measurements showed that this was the highest
rate achievable by the node with the worst link to the AP (node 15). Additionally, we disabled
the RTS/CTS, rate adaptation, turbo, fast frame, bursting and unscheduled automatic power save
delivery functionality, as well as the antenna diversity scheme for transmission/reception.

13
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Unless otherwise specified, all nodes use the same transmission power level of 17 dBm. Given
the node placement of Fig. 4.1, this setting results in very dissimilar link qualities between each
station and the AP (e.g., node 3 is extremely close). To confirm this link heterogeneity, we de-
signed the following experiment. For a given node, we ran a 10-secondping test between the sta-
tion and the AP, recording the SNR values of the received frames as obtained by thewireshark
packet analyzer1 from theradiotap header.2 This test was performed on a node-by-node basis,
and repeated for 18 hours. The average and standard deviation of theSNR for each link are shown
in Fig. 4.2.

From the figure we confirm that the use of a fixed power setting in the considered deployment
results in very diverse radio links between the AP and the stations. Note that,throughout the
reported experiments, we periodically repeated the above measurement in order to confirm that
the radio conditions did not change.

4.2 Validation of the Algorithms

Our first set of experiments aims at confirming that the good operation properties of CAC and
DAC, obtained analytically and via simulations in [18, 19], are also achieved ina real testbed.
Specifically, we want to confirm that the use of the algorithms results in stable behavior despite
the described hardware/software limitations and the impairments introduced by the channel con-
ditions, and also assess their resource consumption in terms of CPU and memory usage.

Point of operation. We consider a scenario withN = 10 stations, constantly backlogged with
1500 B UDP frames, that send data to the AP utilizingiperf.3 For the case of the centralized
algorithm (CAC) we log its key variables, namely, theCW announced in beacon frames and the
observed collision probabilitypobs. Both are obtained every 100 ms and depicted in Fig. 4.4.

As the figure shows, CAC drives the WLAN to the desired point of operation. Indeed, the
announcedCW oscillates between the two allowed values closest to the optimalCWmin, whilepobs
fluctuates stably around the desiredpopt given by (2.1). We conclude that, despite the hardware
limitations imposed on the values ofCW and the channel impairments, CAC is able to drive the
WLAN to the desired point of operation.

Next we validate the operation of the distributed algorithm (DAC). We consider the same
scenario as before, logging the key parameters of the algorithm at each station, namelyCWmin,i,
pown,i andpobs,i. In Fig. 4.3 we depict in the upper subplot the evolution of theCWmin used by
four representative nodes (namely 2, 3, 8 and 9), while in the lower subplot we show the collision
probabilities estimated by node 2 (pobs,2 andpown,2).

From the two subplots we see that DAC also drives the average collision probability in the
WLAN to the desired value. However, there is a key difference as compared to the previous
case: while with CAC all stations use the sameCWmin value, with DAC they operate at different
averageCWmin. Indeed, the four stations considered in the experiment use averageCWmin values
of 92, 300, 92 and 64, respectively. As we will explain in Section 5.2, this behavior is caused by
the relative differences in link qualities, already identified above, combinedwith the inability of
the wireless interface to identify the reasons for a packet loss.

1http://wireshark.org
2With theradiotap option, the driver provides additional information about received frames to user-space appli-

cations, including the signal-to-noise ratio.
3http://sourceforge.net/projects/iperf/
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Resource consumption. In addition to analyzing the performance of CAC and DAC, it is
also important to asses their resource consumption. For this purpose, we analyzed the CPU and
memory usage of the algorithms utilizing thetop Linux application, which provides a dynamic
real-time view of a running system. With this tool, we recorded the used sharesof the CPU time
and available physical memory with a frequency of 1 sample per second andcomputed the average
usage. CAC, which runs exclusively at the AP, demands on average 39% of the CPU time and only
1.6% of the physical memory. For the case of DAC, which runs at every station, the average CPU
time consumption is 28%, while the physical memory consumption is 4.3%. Given the low speed
of the nodes’ CPU (233 MHz) and their reduced physical memory (128 MB), these results show
that both CAC and DAC are suitable for commercial deployments.



Chapter 5

Performance Evaluation

We next assess the performance of the algorithms under a large number ofdifferent scenarios
and compare their performance against the default EDCA configuration,which we use as a bench-
mark. Each considered experiment runs for 2 minutes and is repeated 10 times to obtain average
values of the measured metrics with good statistical significance.

5.1 UDP Throughput

We first measure the achievable throughput between the nodes and the APwhen all the stations
are transmitting UDP traffic at the same time. Fig. 5.1 plots the average and standard deviation of
the total throughput obtained with each mechanism. We observe that the EDCAdefault configu-
ration achieves around 11 Mbps, while the use of DAC and CAC results in a performance gain of
approximately 45%. Therefore, we confirm that both approaches, by properly adapting theCW
configuration to the number of contending stations, achieve a much higher efficiency.

To further examine the performance of the algorithms, we plot the per-stationthroughput in
Fig. 5.2. According to the figure, the use of the EDCA recommended values not only provides the
lowest overall throughput figures, but also fails to provide a fair sharing of the available bandwidth.
Indeed, it can be seen that, e.g., the node with the best link quality to the AP (node 3) achieves
more than three times the throughput obtained by the station with the poorest link (node 15).

While DAC provides a larger total throughput than EDCA, it does not improve the level of
fairness. Actually, it results in a somehowoppositeperformance as the one obtained with EDCA:
stations that obtained a relatively large bandwidth with EDCA (e.g., nodes 3, 6) now obtain a
relatively small bandwidth with DAC. The use of CAC, on the other hand, provides the best per-
formance both in terms of total throughput and fairness, as it provides allstations with very similar
throughput values.

To quantify the throughput fairness achieved by the considered mechanisms we compute the
Jain’s fairness index (JFI) [15]. The resulting JFI values are 0.865,0.997 and 0.817 for the case of
EDCA, CAC and DAC, respectively. These figures confirm the good fairness properties of CAC,
and shows that DAC and EDCA suffer from a higher level of unfairness, a result that we analyze
next.

18
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Figure 5.1: Total throughput with UDP traffic.
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Figure 5.3: Throughput obtained vs. SNR.

5.2 Impact of SNR on Throughput

We have seen that link quality impacts the obtained throughput distribution, in particular for
EDCA and DAC. To analyze this impact, we plot in Fig. 5.3 the average UDP throughput per
station vs. the SNR of the link between the station and the AP. Note that for easeof visualization
we also plotnatural smoothing splinesover the data points.

From the figure we observe that: (i) for EDCA there is a noticeable and positive correlation
between SNR and throughput; (ii) for CAC, performance is not much affected by SNR dissimilar-
ities, as significantly better link qualities result in very small throughput improvements; (iii) for
DAC there is a large and negative correlation between SNR and throughput, with small differences
in terms of SNR causing large differences in terms of throughput.

For the case of EDCA, the positive correlation is caused by thecapture effect. With this effect,
in case of a collision the receiver can decode the packet with the higher SNR. As a result, stations
with better link quality obtain higher throughput. In contrast, the use of CAC reduces the number
of collisions in the WLAN, and therefore the impact of the capture effect is significantly reduced.

For the case of DAC, the negative correlation is also driven by the capture effect as follows.
Nodes with high capture probability will experience smaller collision rates than the others, and
therefore will havepown,i smaller thanpobs,i. This will cause a positive error signal according
to theefairness,i term in (2.7), which will result in largeCWmin values. Conversely, nodes with
low capture probability will experience largerpown,i values and smallerpobs,i ones, and therefore
will have smallerCWmin configurations. In this way, capturing nodes will transmit less often
and therefore will obtain low throughput figures, while the other nodes willtransmit more often
and experience a higher throughput. Additional experiments with different transmission power
settings, not reported due to space constrains, confirmed that a careful equalizationof the link
qualities is able to restore fairness in all cases.
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Figure 5.4: Performance with hidden nodes.

5.3 Hidden Nodes Scenario

Our adaptive algorithms have been designed for scenarios where all stations are in radio range
of each other and coordinate their transmissions by means of carrier sensing. However, in real
deployments hidden nodes may be present, and therefore we want to investigate their behavior
under such circumstances.

To this aim, we ran extensive measurements, selecting different topologies and different trans-
mission power settings, to determine the most pathological scenario. This is obtained when node
3 acts as AP, and nodes 2 and 8 act as stations, using a transmission powerlevel of 5 dBm. With
this setting, each EDCA station transmitting in isolation (i.e., with the other station silent) obtains
about 16.3 Mbps of UDP throughput, while if both stations transmit simultaneously the throughput
of each one drops to 1.6 Mbps. Thereby we managed to reproduce a hidden node scenario.

We then repeated the experiment with CAC and DAC, and obtained the results depicted in
Fig. 5.4. We observe that the use of DAC does not improve performance over EDCA. In contrast,
CAC provides a dramatic throughput increase, i.e., more than three times the throughput attained
with the other mechanisms. We conclude that CAC detects the large collision rate and commands
hidden nodes to be less aggressive by announcing a higherCWmin, which lessens (but does not
eliminate) the hidden node problem. On the other hand, a station running DAC is not able to
overhear MAC (re-)transmissions from hidden nodes, and hence cannot correctly estimate the
collision probability in the network.

5.4 Impact Network Size

We next evaluate the performance of the algorithms as a function of the number of stations. To
this aim, we measure the total throughput and JFI for an increasing number of contending nodes,
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adding new stations in ascending order of their link quality. We plot the throughput and fairness
results in Fig. 5.5 and Fig. 5.6 respectively.

We observe that for both DAC and CAC the total throughput performance issubstantially flat,
regardless of the number of stations. This result confirms that both approaches are able to adapt
theCW to the number of stations present in the WLAN.

For the case of EDCA, performance degrades with the number of stations,which is the ex-
pected result from the use of a fixed set of (relatively small) contention parameters. However, for
N > 15 the total throughput performance slightly grows again, a behavior caused by the capture
effect as the last nodes to be added in our experiments are the ones experiencing better link quali-
ties (nodes 3 and 6). This is confirmed by the fairness values, as forN > 15 there is a drop in the
JFI for the case of EDCA. JFI values also confirm that DAC is more sensitive to heterogeneous
link conditions, as its performance noticeably degrades withN . In contrast, with CAC the fairness
index is practically constant for allN values.

5.5 TCP Throughput

We next evaluate performance in a scenarios in which stations use TCP. Westart by evaluating
the throughput and fairness performance when all stations are constantly backlogged sending TCP
traffic to the AP, replicatingbulkyFTP transfers. Note that this scenario is substantially different
from the ones considered in the previous sections, as TCP congestion control1 introduces a “closed
loop” that can lead to extreme unfairness conditions and even starvation [10].

We plot in Fig. 5.7 the total throughput values for the three mechanisms. According to the
results, both CAC and DAC significantly outperform EDCA, improving throughput by 50% and
40%, respectively.

The per-station throughput distribution is depicted in Fig. 5.8. With EDCA, the node with the
poorest link quality (node 15) suffers from a large performance degradation, this being worse than
in the UDP case (see Fig. 5.1). The use of DAC with TCP traffic also exacerbates the unevenness in
the traffic distribution, with node 15 clearly outstanding among the other nodes. DAC results also
present a large deviation, caused by relatively frequent TCP timeouts from nodes with weak radio
link (e.g., node 15). Conversely, CAC yields a remarkable fair and stable throughput distribution.

Like in the UDP case, we compute the JFI values for the resulting throughputdistributions.
In this case, the values for EDCA, CAC and DAC are 0.787, 0.996 and 0.692, respectively. We
conclude that, as expected, the performance of EDCA and DAC worsenswith TCP, while CAC
preserves its good properties in this scenario.

1The Linux distribution used in our deployment executes the TCP CUBIC variant [11].
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Figure 5.5: Total throughput for different number of stations.
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5.6 TCP Transfer Delay

We finally consider a scenario involving finite-size TCP connections. Morespecifically, all
stations alternate periods of activity—during which a transmission of 10 MB occurs—with silent
periods exponentially distributed with mean1/λ [1]. We consider three different values forλ,
corresponding to three different levels of activity, namely high, moderateand low. For each case
we ran 1-hour experiments, logging all transfer durations and computing the per-station average
delay. We use abox-and-whiskerdiagram to illustrate the distribution of the average delay among
nodes: we provide the median, first and third quartiles of the average delay, as well as its maximum
and minimum values.

Results are depicted in Fig. 5.9. As shown in Fig. 5.9(a), withλ = 1/30 s, which corresponds
to high activity, we see that CAC provides the smallest and most uniform distribution of transfer
delay among nodes, with practically no difference between the best and worst performing node.
In case of EDCA, the delay shows a larger median and higher variability. However, the small
distance between the first and third quartiles shows that most of the stations experience similar
performance. Finally, for the case of DAC, despite the median is similar to the one of CAC, results
show a much larger dispersion.

As can be seen in Fig 5.9(b), when the traffic activity is moderate (λ = 1/60 s), the absolute
values decrease, but the relative results are similar, i.e., CAC provides again the smallest and most
uniform delays among nodes. Finally, as depicted in Fig 5.9(c), when the activity of the nodes
is low (λ = 1/90 s), medians are very similar, but CAC still provides the most fair distribution
of the transfer delays. From these experiments, we conclude that CAC also provides the best
performance under dynamic traffic scenarios.

In order to provide a better and more intuitive feeling of what is going on withinthe testbed
during these measurements, we report in Fig. 5.10 the duration of each file transfer for all the three
mechanisms (reported only for the case ofλ = 1/30 s without loss of generality). Specifically,
in Fig. 5.10(a) we can observe that EDCA, as expected, favors the transfers of those nodes which
experience better channel conditions (i.e., node 3, 6), whereas penalizes those initiated from nodes
experiencing poor link qualities (e.g., node 15). In Fig. 5.10(b) instead, we can graphically ap-
preciate how CAC equally shortens the transfer time without any remarkable distinction among
nodes. Finally, in Fig. 5.10(c) we can observe how DAC favors nodes with relatively low SNR
(e.g., nodes 15, 16), while nodes with good channel conditions almost starve, being able to com-
plete only a few transfers (i.e., node 3, 6). Moreover, given a fixed node, the large variability of
file transfer duration reflects a higher level of unpredictability which was absent with the other
mechanisms. In fact, results obtained with DAC suffer from a larger dispersion, as enlightened by
the broad standard deviations shown in Fig. 5.9. In our experiments we observed that this highly
variable file transfer duration, as well as the TCP throughput, is due to the frequent occurrence of
TCP timeouts at nodes with weak connectivity, which are also the nodes usingthe most aggressive
CWmin when DAC is adopted.



26 Chapter 5. Performance Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

T
ra

ns
fe

r 
tim

e 
[s

]

EDCA
CAC
DAC

(a) λ = 1/30 s

 0

 100

 200

 300

T
ra

ns
fe

r 
tim

e 
[s

]

EDCA
CAC
DAC

(b) λ = 1/60 s

 0

 10

 20

 30

 40

 50

 60

T
ra

ns
fe

r 
tim

e 
[s

]

EDCA
CAC
DAC

(c) λ = 1/90 s

Figure 5.9: TCP delay performances.
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Related Work

The scientific literature offers many examples of MAC optimization approaches. Many of
them are based on a centralized entity, responsible for monitoring system performance and adapt-
ing the system parameters to current conditions. Other works focus on distributed approaches to
adapt MAC parameters. Very little experimental work is available, and it is based on complex
algorithms, non-standard functionality and small-sized networks. In the following we review the
most significant contributions in each of these areas and describe the novelty of our work.

Centralized approaches. A significant number of approaches exists in the literature [16, 8,
18, 22] that use a single node to compute the set of MAC parameters to be used in the WLAN.
With the exception of our CAC algorithm [18], the main drawbacks of these approaches are that
they are either based on heuristics, thereby lacking analytical support for providing performance
guarantees [16, 8], or they do not consider the dynamics of the WLAN under realistic scenarios
[22].

Distributed approaches. Several works [24, 17, 4, 5, 12] have proposed mechanisms that
independently adjust the backoff operation of each stations in the WLAN. The main disadvantages
of these approaches are that they change the rules of the IEEE 802.11 standard and therefore
require introducing significant hardware or firm-ware modifications.

Implementation experiences. Very few schemes to optimize WLAN performance have been
developed in practice [22, 9, 2]. While the idea behind Idle Sense [12] is fairly simple, its im-
plementation [9] entails a significant level of complexity, introducing tight timing constrains that
require programming at the firmware level. The same limitation holds for the approach of [2],
which introduces changes to the MAC protocol that require redesigning of the whole NIC imple-
mentation. Finally, the work of [22] does not propose or evaluate any adaptive algorithm to adapt
the CW but just evaluates the performance of static configurations. Additionally, all of these
works rely on testbeds substantially smaller than ours.

28
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Conclusions

In this thesis, we prototyped two adaptive mechanisms capable of tuning the contention win-
dow along the network conditions. In contrast to other proposals which require complex mod-
ifications, these mechanisms rely on standard functionalities already supported by COTS hard-
ware/firmware, and do not introduce any extension to the IEEE 802.11 MAC. We extensively
evaluated the performances of the two mechanisms in a 18-nodes testbed, considering a wide
spectrum of network conditions. With our experimental study we identified thekey limitations
of the distributed scheme, inherent to realistic scenarios, and we confirmedthat the centralized
mechanism significantly improves network throughput, transfer delay and fairness under a broad
variety of circumstances, including the pathological case of hidden nodes.

A major conclusion from our work is that, by simply adding a few lines of code at the AP
to exploit the functionality readily available, we can achieve performance improvements of up to
50%. We do believe that the results drawn herein advocate a widespread adoption of the central-
ized mechanism. Finally, we also think that a centralized scheme should be adopted for future
proposals design, while a distributed approach is nothing but a necessary fallback for those cases
in which any node has a centralized and complete view of the network.
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