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Abstract—In this paper we study static and dynamic ap-
proaches to energy efficiency in dense cellular networks, where
interference is one of the main limiting factors. We consider
the two main approaches to energy efficiency through adaptive
management of the network capacity: Base station (BS) sleeping
and cell zooming. We propose an analytic framework for the
assessment of the energy efficiency potential of several joint
planning and management strategies. Our approach is based on
stochastic geometry tools, on an approximate but accurate model
of interference, and on a detailed, measurement-driven power
model. For a given user density, we show how to derive the
optimal BS density, and the BS transmit power which minimizes
the mean power consumption of the network, while achieving a
target QoS level. Through numerical evaluations, we show the
potential savings enabled by joint (and disjoint) optimization
of transmit power and density of active BSs. For a realistic
network scenario, our approach suggests that huge energy savings
are achievable by combining sleeping and zooming. In addition,
we show that a static strategy, based on carefully planning the
density of installed BS and their transmit power, can achieve
most of the benefits of capacity tuning achievable through either
sleeping or zooming. This result has a very high relevance for
network operators, since it allows avoiding the feared decrease
in operational lifetime which the daily switching of BS entails.

I. INTRODUCTION

Energy efficiency in wireless access networks is improving,

mostly thanks to the development of more energy parsimo-

nious base station (BS) generations [1]. With the soon-to-

come heterogeneous network architectures of 5G, and the

consequent increase in capacity through network densification

in high traffic areas, many small cells will be deployed, with

limited individual energy consumption, but huge total energy

demand [2]. This environment offers interesting opportunities

for energy efficiency through network management, since the

dense small cell deployments will be used to support traffic

peaks only in some periods of a day. The two main approaches

to energy efficiency through adaptive management of the

network capacity are known as base station sleeping and cell

zooming [1], [3]. With the term base station sleeping we

mean the possibility of activating and deactivating BSs on

demand, while cell zooming consists in adaptively selecting

the transmission power of BSs, so as to modify the BS

coverage. Of course, both these approaches have a significant

impact of the interference pattern.

Sleep modes have been proposed in many variants, each

of which has shown to be able to deliver savings of at least

20−30% in realistic settings [1], [4]. However, the validity of

such estimations of energy savings are limited to the specific

algorithm, and to the setting considered. A few works [4] have

proposed an analytic approach for estimating the overall en-

ergy saving potential of sleep modes. However, such estimates

do not take into account the effects of interference, which play

a crucial role in determining the overall network performance,

especially in future ultra-dense scenarios. Moreover, they are

based on a simplified power model, which depends only on

BS utilization, and does not take into account the complex

interplay between transmit power and utilization.

Cell zooming algorithms have been proposed [3], as a way

to adapt to localized increases in traffic demand, as well as a

possible approach to compensate for the loss in coverage and

capacity due to BS switch off.

Energy efficient network planning has also been proposed

[1], [5], typically as a complement to dynamic network

management strategies. However, the vast majority of existing

results are heuristics based on simple, linear power models

which typically neglect the complex interplay between these

parameters, the effects of interference, and the total power

consumed. Existing estimates of energy savings are closely

tied to the details of the given algorithm, and of the setup

chosen for the assessment.

This issue becomes even more important in future 5G

small cell environments, which are typically dominated by

interference. Overall, which dynamic BS management strategy

holds the largest potential for energy savings is still an open

issue.

In this paper we propose an analytic framework for the

assessment of the potential for energy efficiency of several

joint network planning and either static or dynamic manage-

ment strategies, based on stochastic geometry tools, on an

approximate but accurate model of interference, and on a

detailed, measurement-driven power model. More specifically,

for a given user density, we propose an approach for deriving

the optimal BS density and the BS transmit power which

minimize the mean power consumption of the network, while

achieving a target QoS level. Through numerical evaluations,

we show the potential savings enabled by joint (and disjoint)

optimization of transmit power and density of active BSs. On

a realistic setting with measurement-based traffic profiles, we

show that huge energy savings are achievable by combining



the sleeping and zooming approaches. In addition, we also

show that a static strategy, based on carefully planning the den-

sity of installed BSs and their transmit power alone reaps most

of the benefits of capacity tuning through either sleeping or

zooming. This is a result which can have very high relevance

for network operators, since it allows them to avoid the feared

decrease in operational lifetime (and thus a reduced network

availability) which the daily switching of the operational state

of BSs entails [6]. Our results are bounds with respect to what

can be actually achieved in real cellular networks, since we

assume that any base station density is achievable, although

this is clearly not possible in practice.

The paper is organized as follows. In Section II we present

the system model, and in Section III we derive a model for

user perceived performance. In Section IV we formulate an

optimization problem for the derivation of the energy optimal

network configuration. In Section V we assess numerically our

results, and in Section VI we conclude the paper.

II. MODEL AND ASSUMPTIONS

We consider the downlink information transfer in a cellular

access network, which, with respect to the uplink, typically

accounts for the bulk of the energy consumed by a BS [7].

User terminals are assumed to be distributed in space

according to a homogeneous planar Poisson point process,

Πu, with intensity λu users per km2, while BSs are assumed

to be distributed in space according to a homogeneous planar

Poisson point process, Πb, with density λb BSs per km2. Such

distribution reflects the result of real life constraints on BS

locations [1].

We assume that all BS densities are feasible. In the homoge-

neous Poisson process layout of BSs, if each BS independently

makes a decision to either turn off, or stay on, according

to some probability (probabilistic sleep modes), the resulting

point process of BSs is a thinned homogeneous Poisson

process, and all BS densities are indeed achievable.

The end user performance metric that we use is the per-bit

delay τ of best effort data transfers, defined as the inverse of

the short-term user throughput, i.e., the actual rate at which

the user is served, taking into account the capacity to the user

as well as the sharing of the BS time across all associated

users. The network performance metric is the average of the

per-bit delay. The performance constraint that is enforced

is as follows: if the average per-bit delay experienced by a

typical user, τ̄ , is less than a predefined threshold τ̄0, then

users are said to perceive satisfactory performance, and the

corresponding BS distribution is feasible. Here, τ̄ is computed

as the expectation of τ with respect to the Palm distribution

associated with Πu.

We assume that the network serves a mix of best effort

traffic and constant bit rate traffic (the latter can be voice,

or voice-like traffic, or video), that is served at strictly higher

priority than best-effort data traffic. We consider that a fraction

γ of the users makes voice-like calls with mean call holding

time µ−1
H and mean inter-call waiting time µ−1

W . The rate

requirement for an active call is R0 bits per second. The

remaining fraction (1 − γ) of the users requests best-effort

service. BSs serve calls for the fraction of time that ensures

that the user achieves exactly the target bit rate, a fraction of

which is consumed by voice-like calls, while the rest is filled

by best-effort data traffic. The active BSs in the network must

be capable of providing a user-perceived average per-bit delay

of at most τ̄0, while prioritizing voice-like traffic. We assume

that, due to the necessity of providing adequate performance

to best effort users, voice-like traffic consumes a small fraction

of the cell bandwidth, so that the resulting blocking probability

for voice calls is negligible. We assume best effort users are

in saturation, i.e. they are always receiving content.

A. Channel and Service Model

In this paper, we do not consider the effect of fading and

shadowing, and only take into account distance-dependent path

loss. We assume random frequency reuse is in place, with reuse

factor k. That is, every BS is assigned one out of k frequency

bands with equal probability. 1

We assume users are served by the BS which results in the

largest SINR at the user location. We consider urban scenarios,

where the high capacity demand justifies the use of strategies

for energy efficient network planning and management, and

where the assumption of large attenuation (with exponent α ≥
3) typically holds. In these settings, as no fading is considered

and BSs are assumed to all have the same transmit power,

assuming that users associate to the closest BS is a reasonable

approximation [8].

Denote by S(x) the location of the BS that is closest to a

user located at x. We denote the capacity to a user located

at a distance r from the BS by C(r) bit/s per Hertz. In what

follows, we model C(r) using Shannon’s capacity law, given

by

C(r) = (B/k) log2

(

1 +
PT r

−α

N0 + I(r, k)

)

where α is the attenuation coefficient, N0 the power spectral

density of the additive white Gaussian noise, and I(r, k)
the total received interfering power. With ρV we denote the

fraction of BS time that is required, on average, to serve voice-

like traffic. In order to serve a call originating from a user at

a distance |x|, the BS has to devote a fraction of time equal

to R0

C(|x|) . For the BS to which the user located at the origin

is associated,

ρV =
∑

x∈X

R0

C(|x|)
.

µ−1
H

µ−1
H + µ−1

W

1S(x)=S(0), (1)

where
µ
−1

H

µ−1

H
+µ−1

W

is the average fraction of time that a user

requires voice service, and X is the set of voice user locations.

1S(x)=S(0) is the indicator function of the event that a user at

location x is served by the same BS that serves the user at

1In realistic settings, better frequency management mechanisms can be
implemented, which minimize the probability of two neighboring cells sharing
the same frequency band. However, with probabilistic sleep modes random
reuse allows keeping such probability independent of the density of active
BSs, and hence it allows estimating the impact of interference on energy
saving strategies independently of any frequency management mechanism.



the origin. BSs devote only the resources (time) that remain

after serving the voice calls to best effort users. We assume

that BSs use a processor sharing mechanism to divide capacity

among all the connected best-effort users.

B. Energy Consumption Model

The power consumed by a BS depends on a number of fac-

tors, which vary according to the BS type (e.g. macro, micro,

femto) and the implementation technology, among others. In

what follows, we refer to the BS energy models proposed in

[7], [9], [10]. With minor differences, they all propose a power

model which consider only the power consumed by downlink

communications, as it constitutes the bulk of the total power

consumed by a BS. The structure of the power model we

consider is Ptot = PPA + PBB + PRF + POH , where:

• PPA is the power consumed by the power amplifier. It nat-

urally scales down when the transmit power p is decreased,

when the number of occupied subcarriers is reduced in

idle mode operation, and/or when there are subframes not

carrying data.

• PBB is the power consumed by the baseband signal pro-

cessing units. Typically, it does not depend on load, unless

micro-sleep modes are implemented [7], [10].

• PRF is the power consumed by the radio frequency

transceivers for uplink and downlink. Its dependency on load

is similar to PBB [9].

• POH is the power consumed by active cooling, and the

losses in DC-DC conversion, and main supply.

The resulting overall consumed power shows a dependency

on transmit power (keeping load constant) which is well

approximated by a linear function [9], [10].

A measure of system load (or utilization) of a BS is typically

the fraction of BS resources (channels, or BS time) which are

active. In what follows we model utilization as the average

fraction of time in which the BS is transmitting. Coherently

with these observations, in this paper we adopt the following

analytical model for BS consumed power:

k1 + U [k2 + k3(p− pmin)] (2)

where p is the transmit power, which we assume can be

varied within an interval [pmin, pmax]. The component k1
models the total power consumed when the BS is idle, which

does not depend on load or transmit power (e.g. part of

cooling, power amplifier consumption in idle state).

U is the utilization of BSs. In what follows, we model

utilization as the average fraction of time in which the BS

is transmitting, and we assume that, when transmitting, a

BS is using the whole bandwidth at its disposal. When

transmit power is higher than that required to achieve the

threshold expected per-bit delay τ̄0, we assume that BSs only

serve users for the fraction of time required to satisfy the

performance constraint, and remain idle (i.e., not transmitting

to any user) for the rest. Conversely, when transmit power

is lower than that required to achieve τ̄0, BSs increase their

utilization (the fraction of active resources) in order to satisfy

the user-level QoS requirements.

k2U models that fraction of consumed power which depends

on utilization, but not on transmit power (such as part of

baseband and RF processing, when micro-sleep techniques

are in use [10]). The third component, k3U(PT − Pmin),
models that fraction of consumed power due to the power

amplifier which depends, at the same time, on the transmit

power PT and on the amount of active resources at the

BS (such as the energy consumed by the power amplifier).

Finally, as POH is, by its nature, directly proportional to the

total consumed power, it is taken into account as a (constant)

factor in all coefficients k1, k2 and k3.

III. MODELING USER PERCEIVED PERFORMANCE

In this section, we characterize the per-bit delay perceived

by a typical best-effort user who is just beginning service, as a

function of the main system parameters. In settings with dense

small cells, it becomes crucial to model accurately the effect

of interference on user perceived performance. In order to do

so, it is essential to model its dependency on traffic patterns.

In what follows, we propose a result which relates the main

performance parameter of the system, i.e., the expected per-bit

delay seen by a typical user, to the main system parameters,

such as user density, BS density, and the target QoS value for

the network, in terms of maximum expected per-bit delay.

Theorem 1 (Average BS utilization [4]). For a given density

of users, of base stations, and a given share of voice users

γ, the average base station utilization in the network U(τ̄) is

given by

U(τ̄) =

[

1 + γ

(

R0
µ−1
H

µ−1
H + µ−1

W

τ̄0 − 1

)]

τ̄

τ̄0
(3)

where τ̄ is the per-bit delay perceived by a typical best effort

user which is beginning service.

In order to take into account realistically the effects of in-

terference on power consumption in a cellular access network,

we present a result which relates the average interfering power

for the typical user which is just beginning service.

Lemma 1. The average interfering power for the typical user

arriving in the system at a distance r from the serving BS,

can be approximated as

Ī(r, k, τ̄) = U(τ̄)
pλb2πr

2−α

k(α− 2)
(4)

where τ̄ is the expected per-bit delay.

Proof. The total received interfering power I(r, k, t) at time t
for a user at a distance r from its serving BS is a random vari-

able, depending on the location of all other BSs in the plane,

as well as on the specific traffic pattern at each interfering BS.

Its expression can be written as

I(r, k, t) =
∑

j∈Φ(k)

pr−α
j uj(t) (5)



where Φ(k) is the set of interfering BSs in the plane. uj(t) is

equal to 1 if the j − th BS is active at time t. Given the

random reuse policy we have assumed, Φ(k) is a Poisson

point process, derived by thinning the process of BSs by a

factor k, and by removing the BS serving the given user. The

computation of the Palm expectation of I(r, k, t), Ī(r, k, t), is

complex, as uj(t) is also function of the specific BS layout. In

what follows, we approximate such computation by assuming

all BSs have the same mean utilization U(τ̄). Moreover, note

that as a result of interference, the BS with the strongest

SINR at the user location is not necessarily the closest one.

However, in regimes of high attenuation due to propagation

(α ≥ 3 or more, typical of urban settings) this is still a good

approximation. Hence we assume users associate to the closest

BS. As a result of these approximations, we can write Ī(r, k, t)
with

Ī(r, k, τ̄) = U(τ̄)

∫ +∞

r

p
λb

k
s−α2πsds = U(τ̄)

pλb2πr
2−α

k(α− 2)
(6)

where λb

k
2πsds is the mean number of interfering BSs in an

annulus of radii s and s+ ds, with s ≥ r.

Theorem 2 (Mean per-bit delay). The mean per-bit delay τ̄
perceived by a typical best-effort user joining the system when

the density of BSs is λb and the density of users is λu, and

transmit power is p can be approximated as the unique solution

of the following fixed point problem:

τ̄ =

∫ ∞

0

f(r)
e−λbπr

2

λb2πr

C(r, τ̄)
dr. (7)

with

f(r) =

∫ ∞

0

∫ 2π

0

e−λbA(r,x,θ)λuxdθdx

A(r, x, θ) is the area of the circle centered at (x, θ) with

radius x that is not overlapped by the circle centered at

(0,−r) with radius r. C(r, τ̄) is the capacity to a user

at a distance r for a reuse factor k, given by C(r, τ̄) =

(B/k) log2

(

1 + pr−α

N0+Ī(r,k,τ̄)

)

, with Ī(r, k, τ̄) given by (4).

For the proof, we refer to appendix A. Note that the expres-

sion of τ̄ from Theorem 2 is implicit due to the dependency

of the interference on the mean BS utilization, which in turn

depends on the mean per-bit delay τ̄ through (4).

IV. DERIVATION OF THE ENERGY-OPTIMAL NETWORK

CONFIGURATION

In this section we present the formulation of the optimiza-

tion problem, which provides, for a given BS energy model

and mean user density, the energy optimal density of BSs and

BS transmit power which satisfy the performance constraints.

Given the expression of the expected per bit delay, and of

the average utilization, the energy optimal BS density derives

from solving the following optimization problem:

minimizeλb,p λb [k1 + U(λb, λu, p) (k2 + k3(p− pmin))]
(8)

Subject to: U(λb, λu, p) ≤ 1 (9)

τ ≤ τ0 (10)

0 ≤ λb ≤ λb,max (11)

pmin ≤ p ≤ pmax (12)

The maximum BS density λb,max is determined by practical,

technical (backhaul technology) and economic considerations.

The above problem is non-convex and nonlinear. However,

being only a function of the two variables λb and p, it can be

solved efficiently by exhaustive search.

V. NUMERICAL EVALUATION

In this section, we apply our approach to investigate nu-

merically the performance of different strategies for energy

efficiency in cellular access networks.

A. System setup

Base stations work at a frequency of 1 GHz, and use a

bandwidth of 10 MHz. We use a log distance path loss model,

with path loss at a reference distance of one meter calculated

using Friis equation, and with a path loss exponent α = 3.

Unless otherwise specified, we consider the case of pure best

effort traffic (i.e. γ = 0), and λb,max = ∞. Note however that

from the expression of BS utilization in Theorem 3 descends

that varying γ has the same effect on the energy-optimal

configuration as a change in the values of the coefficients of

the BS energy model. Finally, in all scenarios we assume user

density to vary within a given range (λmin
u , λmax

u ). Unless

otherwise stated, we set λmax
u = 0.1 users per square meter.

We consider two different types of BSs. Namely, macro

(with pmax = 10W), and small cell (with pmax = 0.13W)

([7], [9], [10]). With reference to Table I , for each BS

type we consider two choices of parameters for the energy

models. A first one reflects the behavior of the majority of

present day installed BSs [7], [9], and it is characterized

by a low/moderate load proportionality. A second choice of

parameters, labeled load proportional or ”LP”, reflects the load

proportionality achievable through time-domain duty-cycling,

i.e. through micro-sleep techniques which deactivate some BS

components for short time periods [7], [10]). These techniques,

nowadays rarely implemented, make PBB and PRF dependent

on load, in a way that increases the overall load dependency

of both macro BS and small cell BS. As we can see, such

”futuristic” energy models bring the load proportionality (i.e.,

the percentage of maximum total consumed power which

depends on BS load) of both types of BS to about 90%.

B. Joint planning and management strategies

In order to assess the maximum energy savings achievable

with joint network planning and management strategies, we

consider the following parameters:

• λS
b is the BS density resulting as solution of the optimization

problem in Section IV with p = pmax and λu = λu,max;

and



Parameter Macro BS Small Cell BS
Typ LP Typ LP CRAN

pmin [W] 0.1 0.001

pmax [W] 10 0.13

Max cons. power [W] 1500 20 10.6

Load proportionality (%) 60 90 29 90 90

PPA (%) 60 29 54.7

PBB (%) 13 47 0

k1 [W] 600 150 14.2 2 1.06

k2 [W] 0 450 0 12.2 3.54

k3 [W−1] 90.909 44.961

TABLE I: Parameters of the energy model of Macro BS and Small
Cell BS ([7], [9], [10]).
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• λSO
b , pSO are the BS density and transmission power result-

ing from solving the optimization problem in Section IV

with λu = λu,max.

In what follows, and based on the structure of the considered

energy model, we consider the following five main joint

planning/management strategies:

1) Static: It is a network planning strategy with no dynamic

network management. That is, both the density of active BSs
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Fig. 4: Optimal transmit power vs user density, for small cell BS.

and the transmit power do not change while the network is

operating. We assume transmit power to be equal to max

transmit power, as it is typical in present day access networks

[1]. As for the density of installed BS, we assume it is equal

to λS
b .

2) Sleep: In this joint strategy, the density of installed BS

is λS
b . During network operation, TX power is kept constant

at pmax, while the density of active BSs, for a given mean

value of user density is derived from solving the problem in

Section IV with p = pmax, at that value of user density.

3) Zoom: In this strategy, the density of active BSs does

not vary over time, while their transmit power is varied in

order to adapt energy consumption to load. We assume that

in the planning phase, the derivation of the optimal density

of installed BSs assumes that transmit power can be tuned

during network operation. Hence, the density of installed BS

is λSO
b . For any value of user density, the corresponding

optimal transmit power is derived from solving the problem

in Section IV over transmit power only.

4) Sleep+Zoom: In this case, the density of installed BSs is

λSO
b . During network operation, for a given mean user density,

both the density of active BSs and transmit power are set to

be equal to the solution of the problem in Section IV for that

user density.
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Fig. 5: Optimal BS utilization vs user density.

5) Static Optimal: This is also a network planning strategy

with no dynamic network management, like 1) above. The

density of installed BSs is set to λSO
b . The value of transmit

power, which is kept constant during network operation, is

derived by solving the problem in Section IV only over

transmit power, assuming λb = λSO
b , over all the interval

(λmin
u , λmax

u ), and taking the maximum over the interval. The

underlying idea is to avoid dynamic network management,

taking for both transmit power and for the density of installed

BSs, the maximum values assumed by these quantities in the

sleep+zoom strategy, for a given interval of user densities. This

brings to a conservative configuration for the network, though

less conservative than the purely static strategy.

Note that, being defined on a homogeneous spatial dis-

tribution of users and of BSs, and assuming BS density

can be varied with continuity (with no switching costs and

delays), these strategies are not directly applicable to a realistic

scenario. They have been considered because they give an

indication of the maximum energy savings achievable through

a given network planning/management approach.

C. Assessment of the joint strategies

In a first set of evaluations, we have assessed the perfor-

mance of the five strategies over a range of user densities

of (10, 105) users per km2, as the typical values commonly

considered in the planning phase usually fall within such an

interval. In Fig. 1 and Fig. 2 we have plotted the power

consumed per km2 as a function of user density, for the
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Fig. 6: Optimal BS density vs user density.

five strategies. First, it is very important to note that the

adoption of a small cell BS layout implies a reduction of the

energy consumption of 1-2 orders of magnitude, in spite of

the increase in the number of necessary BSs of almost one

order of magnitude, as we will see later. Second, as expected,

when micro-sleep modes at the device level are in use at

BSs, the static strategy is already able to save energy with

respect to present day BSs models. However, the explosion

of traffic and the consequent network densification foreseen

in future 5G networks will push for more energy-efficient

solutions. Moreover, we can see that sleep modes, especially

when combined with zooming, still enable the largest energy

savings, especially at low user densities. Tuning the transmit

power, whether combined with sleeping or not, saves energy

with respect to the static strategy even at peak user density,

as it allows to decrease interference levels and the power

inefficiencies it induces.

As for the static optimal strategies, we can see that it performs

almost identically as the zoom strategy, for all user densities

and across all BS power models. Both these strategies are

overperformed by sleep and sleep+zoom at very low user

densities. However, for user densities close to the peak, the

static optimal strategy is more energy efficient than both the

pure static and the sleep strategies.

The configuration induced by each strategy can be better

understood by Figs. 3 and 4, which show the optimal transmit

power as a function of user density, and Figure 5, for the

optimal BS utilization. The energy savings (of around 60%
for macro BS) which zoom, zoom+sleep and static optimal

strategies exhibit at peak user density are related to the

fraction of total power consumed by a BS which is due to

the power amplifier. Indeed, at high user densities, zooming

acts by minimizing this contribution by reducing transmit

power, while keeping a high BS utilization. When user density

decreases, zooming acts by decreasing utilization while at the

same time increasing transmit power.

Fig. 6 shows the optimal BS density for the given strategies,

as a function of user density. As we can expect, the use of

small cells implies much higher BS densities, with differences

of up to one order of magnitude. In addition, we see that,



when zooming (with or without sleeping) is in place, or

when the static ideal strategy is adopted, even the optimal

density of installed BSs is decreased with respect to the static

(or zooming) strategies. This happens because at high user

densities the system is dominated by interference, in a way

that increasing the transmitted power of all BSs has no impact

on SINR. Zooming therefore acts by reducing the energy

inefficiency due to interference, by decreasing both the density

of installed BSs and the transmit power at peak user density.

Overall, strategies which put BSs to sleep save energy when

the user density is low (e.g. during night), while strategies

which optimize over transmit power have the largest amount

of energy saved during traffic peaks, i.e. when the power

consumed by the network is at its highest. Bottom line,

these trends suggest that among the most important factors

in determining the best strategy in a given setting are the

peak user density, the peak/valley ratio of the temporal traffic

profile, and the amount of time in which the traffic is at high

and low values.

D. Shanghai setup

As we have seen, the relative performance of the five

strategies depends heavily on how traffic varies during the day.

Hence, for a more realistic assessment, we have characterized

the increase in energy efficiency enabled by the considered

strategies with respect to the static strategy, in a setup in

which daily patterns of user density are taken from a realistic

scenario. [11] identifies five different types of cellular traffic

profiles, each related to the main activities of the areas which

generate it (office, residential, entertainment, transport, and

mixed). We have assumed for each profile the same peak user

density of one user per 10m2, and a mean per-bit delay of

100kb/s. Fig. 7 shows the temporal traffic patterns, as well as

the energy savings over 24 hours for a typical working day,

with respect to the static policy, for the 4 policies and the 5

traffic patterns.

Moreover, in order to take into account the impact of cloud

RAN approaches on our strategies, we have considered a cloud

RAN small cell power model, derived from the small cell LP

model, but in which the baseband processing is performed on

a dedicated device instead of the BS (see Table I). We can

first observe that, as expected, the sleep+zoom policy achieves

very large savings (between 70% and 85%), which largely out-

perform the sleep strategy. Second, the zoom strategy, which

does not involve BS duty cycling, has a better performance

than the sleep strategy, in almost all settings, and all the

BS types and configurations. Hence, it is possible to adopt

strategies which avoid putting BS to sleep (with all associated

issues relative to interference management, and to increase

of fault rates, bringing to a decrease of service availability

due to a shortening of BS lifetime [6]) without compromising

on energy efficiency. Third, the static optimal strategy, which

is based only on a network planning which is optimized

according to our approach, has savings comparable to the

zoom and sleep strategies, while avoiding all the complexities

associated with dynamically managing network resources.

E. Model Validation

Finally, in order to assess the impact of the approximations

introduced in the derivation of Theorem 2 on the accuracy of

the model, we have simulated the system for a range of values

of user density between 10 and 105 users per km2, and for

base station densities between 0.1 and 103 BS per km2. Over

these ranges of values, we have compared the measured per-bit

delay with the value derived from Theorem 2. The simulation

values have been measured with a 97% confidence interval

of 3% of the mean value. As a result, the mean difference

between simulation and analysis has always been within 5%,

and never larger than 8%.

VI. CONCLUSIONS

In this paper we have presented an analytic framework for

the assessment of the potential for energy efficiency of several

joint network planning and dynamic management strategies.

By including in our model for user perceived performance

the effects of interference, our approach allows to realistically

assess the potential savings of these strategies, and their

relative performance as a function of the temporal traffic

profile. Far from defining practical schemes for planning and

management, our approach gives an indication as to which

type of strategies has the largest potential for energy savings

in a given urban scenario, and for a given temporal load profile.

In this sense, our work is a first step towards the choice of

practical strategies in a given scenario, as well as a reference

for the evaluation of their performance.
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Fig. 7: Average energy saved over a typical working day by the considered strategies with respect to the static strategy, for five different
temporal traffic profiles in the city of Shanghai [11]

APPENDIX

A. Proof of Theorem 2

Here we sketch the main steps of the proof. The derivation

of the expression of the per-bit delay goes along the same lines

as the proof of Theorem 3.1 in [4]. The main variants are the

use of the palm expectation of I(r, k), Ī(r, k, τ̄), instead of

I(r, k), in order to make the derivation analytically tractable.

Lemma 2. For p ≤ 20W , and λb ≤ 104 BS/Km2, the fixed

point in Theorem 2 admits a unique solution.

Proof. In order to prove that (7) has a unique fixed point,

we have to prove that the operator T (τ̄), whose expression is

given by the right member of (7), is a contraction. To do so, we

verify that Blackwell’s sufficient conditions for a contraction

[12] hold for T . The monotonicity of T is straightforward,

as with increasing τ̄ increases the mean BS utilization, and

hence their interference. And this translates into an increase

in per-bit delays computed in (7).

For the discounting property, we have to prove that ∃β ∈ (0, 1)
such that T (τ̄ + a) ≤ T (τ̄) + βa, ∀a ≥ 0 and for all system

parameter values for which τ̄ is defined. We have U(τ̄ +a) =

U(τ̄) + Ka, with K =
[

1 + γ
(

R0
µ
−1

H

µ−1

H
+µ−1

W

τ̄0 − 1
)]

/τ̄0.

Substituting into the capacity formula, and as Ka ≥ 0, we

have

(B/k) log2

(

1 +
pr−α

N0 + I(r, k) +Kapr−α

)

≥

≥ (B/k)

[

log2

(

1 +
pr−α

N0 + I(r, k)

)

− log2
(

Kapr−α
)

]

Then we can write

T (τ̄ + a) ≤

∫ ∞

0

(
∫ ∞

0

∫ 2π

0

e−λbA(r,x,θ)λux dθ dx

)

·

·
e−λbπr

2

λb2πr

C(r, τ̄)− (B/k) log2 (Kapr−α)
dr

We apply the Taylor series expansion of 1
c−x

for x → 0 to the

fraction at the integrand, and we have, for a → 0

1

C(r, τ̄)− (B/k) log2 (Kapr−α)
≥

1

C(r, τ̄)
+
B log2 (Kapr−α)

kC2(r, τ̄)

Now we have

(B/k)
log2 (Kapr−α)

C(r, τ̄)
≤ Ka

log2 (pr
−α)

log2

(

1 + pr−α

N0+I(r,k)

) (13)

By substituting in the expression (6) for the interfering power,

for p ≤ 20W , and λb ≤ 104 BS/km2, the right member

in (13) is upper bounded by Kβa, with 0 ≤ β < 1. Hence

T (τ̄ + a) ≤ T (τ̄)(1 + Kβa), and as the utilization U ≤ 1,

T (τ̄+a) ≤ T (τ̄)+βa, which proves the discounting property.

Being T (τ̄) a contraction, by the Banach fixed point theorem,

the fixed point problem in (7) admits a unique solution.


