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Abstract—The recently approved Energy Efficient Ethernet
standard IEEE 802.3az achieves energy savings by using a low
power mode when the link is idle. However, those savings heavily
depend on the traffic patterns, due to the overhead inherent in
transitions between active and low power modes. This makes it
impractical to estimate energy savings through measurements or
simulations in all relevant scenarios. In this letter we present an
analytical model to estimate the energy consumption of an Energy
Efficient Ethernet link, based on simple traffic parameters. The
model is validated through simulation and experimental data.

Index Terms—Energy management, modeling.

I. INTRODUCTION

THE recently approved IEEE 802.3az Energy Efficient
Ethernet (EEE) standard [1] is expected to provide sig-

nificant energy savings in local area networks over the coming
years [2]. EEE saves energy by operating the physical layer of
a link in low power mode when it is not carrying traffic. The
EEE standard specifies different low power modes for widely
used physical layers of Ethernet over Unshielded Twisted Pairs
(UTP), namely 100BASE-TX, (100 𝑀𝑏𝑝𝑠), 1000BASE-T
(1 𝐺𝑏𝑝𝑠) and 10GBASE-T (10 𝐺𝑏𝑝𝑠).

Transitions to and from the low power mode are not
instantaneous. The minimum transition times specified in the
standard are different for each speed, but always significantly
larger than the transmission time of the typical maximum-size
frame [1]. Therefore, the energy overhead due to transitions
can be relevant even when the traffic load is low [3]. This
means that, in addition to traffic load, the traffic pattern
characteristics, e.g., frame lengths and interarrival times, are
key to determine the energy savings that will be obtained with
EEE. For example, in the case of a 1000BASE-T link, a load
as low as 3 𝑀𝑏𝑝𝑠 can prevent the link from ever switching to
low power mode if frames are small and evenly spaced, while
for bursty arrivals of large frames the link would be in low
power mode most of the time.

In this letter we propose the first analytical model to
estimate the energy consumption of an EEE link, based on
simple traffic parameters, namely the average frame size and
the first two moments of frame interarrival times. Our model
compares favorably with alternative methods, like actual en-
ergy measurements or packet level simulations [3], which are
impractical or computationally demanding [4].

The rest of this letter is organized as follows. Section II
describes the analytical model that we propose for the esti-
mation of the behavior of EEE links. Section III shows that,
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Fig. 1. State transition diagrams for (a) an EEE 10GBASE-T link, and (b)
for an EEE 100BASE-TX or 1000BASE-T link.

notwithstanding the simplifications used in the model, it can
be used to rather accurately predict the behavior of links with
real traffic. Section IV concludes the letter.

II. MODEL

Behavior of EEE links: EEE links can be in one of the
following four states: Active (𝐴), Sleep (𝑆), Wake (𝑊 ) and
Low Power (𝐿). The state transition diagrams are illustrated
in Fig. 1. Frame transmissions only occur in state A. When the
link completes transmitting all the buffered frames, it enters
state 𝑆 as a transition to state 𝐿. If no frame arrives for a
time period of 𝑇𝑠 seconds while in state 𝑆, the link enters
state 𝐿 (during which power consumption is minimized). A
frame arrival in state 𝐿 results in the link transitioning to state
𝑊 which lasts 𝑇𝑤 seconds. After this wake interval, the link
transitions to state 𝐴 and begins transmitting.

The behavior of EEE 10GBASE-T links is different from
EEE 100BASE-TX and 1000BASE-T links in the case of
a frame arrival in state 𝑆. In EEE 100BASE-TX and
1000BASE-T links, a frame arrival in the sleep interval causes
an immediate transition to state 𝐴 (see Fig. 1b), without
incurring in delays of up to approximately 200 𝜇𝑠 due to
large standard values for 𝑇𝑠. In contrast, immediate transition
to state 𝐴 is not supported in EEE 10GBASE-T links, since the
standard value for 𝑇𝑠 is less than 3 𝜇𝑠. Therefore, in 10 𝐺𝑏𝑝𝑠
links, arrivals have to be buffered while the sleep operation is
completed in 𝑇𝑠 seconds, and the link then goes through state
𝑊 for 𝑇𝑤 seconds before frames can be served (see Fig. 1a).
Note that EEE mechanisms for 100 𝑀𝑏𝑝𝑠 and 10 𝐺𝑏𝑝𝑠 links
are defined for unidirectional links, while 1 𝐺𝑏𝑝𝑠 EEE links
can transition to low power mode only when there is no traffic
in both link directions. Our analysis considers unidirectional
links, and thus reflects the behavior of 100BASE-TX and
10GBASE-T EEE links. Moreover, as shown in Section III,
it also provides a reasonable estimate of the energy savings
in 1000BASE-T EEE links with strongly asymmetric traffic
load, by just looking at the direction with the highest load.

Queue model: We model unidirectional links, and evaluate
the average time spent in each of the four possible link states
by means of an 𝑀/𝐺/1 queue model with infinite waiting
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Fig. 2. System cycle for a 1000Base-T EEE link.

room and with server timeout and activation times. The packet
service rate is non-zero only in the active state, where it equals
a constant 𝑅, corresponding to the link speed.

We denote by 𝑆𝑝 the size of a single frame and by 𝐸[𝑆𝑝]
the average frame size. Frames arrive in batches of random
size 𝑁𝑏 ≥ 1, according to a Poisson process with rate 𝜆 [5].
Each batch arrival, i.e., a burst of received frames, represents
a queue customer in our model. The motivation to use batch
arrivals lies in the bursty nature of packet arrivals in real
networks: packets can arrive at a network interface so close
in time that they are transmitted back-to-back. Batch arrivals
allow this behavior to be captured in the model. However, by
setting 𝑁𝑏=1, Poisson frame arrivals can be modeled as well.

Cycle analysis: The sample path of the queue can be
viewed as a sequence of cycles as illustrated in Fig. 2. A
cycle starts with the batch arrival that induces the transition
from state 𝐿 to state 𝑊 . This is followed by a busy period
with the link in state 𝐴, whose duration is denoted by 𝐵0.
The initial busy period is followed by a random number 𝑁
of sleep/active interval pairs (𝑋𝑖, 𝐵𝑖), 𝑖 ≥ 1, with each pair
corresponding to a batch arrival in state 𝑆 before a time 𝑇𝑠

has elapsed. Note that the sleep time is 𝑋𝑖 = 𝑇𝑠 + 𝑇𝑤 in
the case of 10GBASE-T links while it is the random time
interval between the start of state 𝑆 and the next frame arrival
in 100BASE-TX or 1000BASE-T EEE links. Finally, a sleep
interval of duration 𝑇𝑠 precedes the idle period 𝑉 , whose
random duration corresponds to the time interval before the
beginning of a new cycle. We denote the length of a cycle by
𝑇𝑐 and its average by 𝐸[𝑇𝑐].

Using results from renewal theory [6], we can focus on
the system cycle, and compute the fraction of time spent in
each link state as the ratio between the average time in each
state in a cycle and the average cycle duration. We denote
the fraction of time in the cycle spent in state 𝛼 as 𝑓𝛼, for
𝛼 ∈ {𝐴,𝑆, 𝐿,𝑊}.

We derive system cycle parameters for two cases: (𝑖)
arrivals in 𝑆 are served immediately (e.g., 100BASE-TX and
1000BASE-T EEE links), and (𝑖𝑖) arrivals in 𝑆 are served
with delay (e.g., 10GBASE-T EEE links). Results for the two
cases are denoted as ()′ and ()′′, respectively.

Theorem 1. For unidirectional links in which arrivals in 𝑆
are served immediately, the average cycle duration and the
fraction of time spent in states A, L, S, and W are given by
𝐸[𝑇 ′

𝑐] =
𝜆𝑇𝑤+𝑒𝜆 𝑇𝑠

𝜆 (1−𝜌) , 𝑓 ′
𝐴 = 𝜌, 𝑓 ′

𝐿 = 1
𝜆𝐸[𝑇 ′

𝑐]
, 𝑓 ′

𝑆 = 𝑒𝜆𝑇𝑠−1
𝜆𝐸[𝑇 ′

𝑐]
,

and 𝑓 ′
𝑊 = 𝑇𝑤

𝐸[𝑇 ′
𝑐]

, with 𝜌 = 𝜆
𝑅𝐸[𝑆𝑝]𝐸[𝑁𝑏].

Proof: Consider the different intervals included in 𝑇𝑐. 𝐵0

is the busy period of an 𝑀/𝐺/1 queue with batch arrivals, and
its average depends on the batch arrival rate 𝜆, the mean batch
service time 𝐸[𝜏 ], and the queue size 𝑍0 at the beginning of
the busy period [6]:

TABLE I
COMPARISON OF SIMULATION WITH REAL UNIDIRECTIONAL TRACES

(FROM CAIDA), AND MODEL FOR 10GBASE-T EEE LINKS
(𝑇𝑤 = 4.48𝜇𝑠, 𝑇𝑠 = 2.88𝜇𝑠) WITH BATCH POISSON ARRIVALS

𝜌 𝐸[𝑆𝑝] 𝑚𝑌 [𝜇𝑠] 𝜎𝑌 [𝜇𝑠] 𝑓 ′′
𝐿 [%] 𝑓 ′′

𝐿 [%](
= 𝑓 ′′

𝐴

)
[Bytes] trace trace trace model

0.032 563.4 14.13 16.13 60.99 ± 0.30 62.88
0.075 768.1 8.17 9.27 43.21 ± 0.36 44.63
0.147 423.2 2.30 2.62 9.84 ± 0.13 9.18
0.150 636.4 3.40 3.78 17.57 ± 0.78 16.58
0.191 844.6 3.54 3.95 17.68 ± 0.27 16.79
0.251 587.2 1.87 1.97 5.06 ± 0.09 4.39
0.469 735.4 1.26 1.38 2.20 ± 0.03 1.23

𝐸[𝐵0] =
𝐸[𝑍0]𝐸[𝜏 ]

1− 𝜌
; (1)

where 𝐸[𝑍0] = 1 + 𝜆𝑇𝑤 (the batch arrival that triggers
the wake-up, plus the average number of Poisson batch
arrivals during the wake-up interval 𝑇𝑤). The average batch
service time accounts for the batch size distribution: 𝐸[𝜏 ] =
𝐸[𝑆𝑝]𝐸[𝑁𝑏]/𝑅.

Each busy interval 𝐵𝑖, 𝑖 ≥ 1, occurs if the residual
interarrival time 𝑋𝑖, counted from the end of the previous
busy period, does not exceed the sleep time 𝑇𝑠. Since arrivals
are Poisson, the probability of having no arrivals in 𝑇𝑠 is
𝑃0 = 𝑒−𝜆𝑇𝑠 . Thereby, the number 𝑁 ≥ 0 of busy periods in
a cycle, not counting 𝐵0, can be seen as the number of con-
secutive successes of a geometric 𝑟.𝑣. with success probability
1−𝑃0. Hence, its average value is: 𝐸[𝑁 ] = 1−𝑃0

𝑃0
= 𝑒𝜆𝑇𝑠 −1.

Given that the sleep time of 𝑇𝑠 seconds is not completed,
the duration of 𝑋𝑖 is that of a truncated exponential, and hence
its average is 𝐸[𝑋𝑖∣𝑋𝑖 ≤ 𝑇𝑠] =

1
𝜆 − 𝑇𝑠

𝑒𝜆𝑇𝑠−1
, 𝑖 ≥ 1.

As for the busy periods 𝐵𝑖, 𝑖 ≥ 1, an expression like (1)
holds, with 𝐸[𝑍𝑖] = 1, since the service starts immediately
in state 𝑆. Hence, all 𝐵𝑖, as well as all 𝑋𝑖, 𝑖 ≥ 1, are 𝑖.𝑖.𝑑.
𝑟.𝑣.’s. The idle period 𝑉 has mean 1/𝜆 due to the lack of
memory of the exponential distribution. Thereby the average
cycle duration is as follows:
𝐸[𝑇 ′

𝑐]=𝑇𝑤+𝐸[𝐵0]+𝐸[𝑁 ](𝐸[𝑋1∣𝑋1≤𝑇𝑠]+𝐸[𝐵1])+𝑇𝑠+
1

𝜆
.

Considering that the link is in state 𝐴 during busy periods
𝐵𝑖, in state 𝐿 during 𝑉 , in state 𝑆 during 𝑋𝑖 plus 𝑇𝑠 seconds
before 𝑉 , and in state 𝑊 during the initial 𝑇𝑤 seconds of
each cycle, the result follows.

Theorem 2. For unidirectional links in which arrivals in 𝑆 are
served after the completion of the sleep time 𝑇𝑠, the average
cycle duration and the fraction of time spent in states A, L,
S, and W are given by 𝐸[𝑇 ′′

𝑐 ] =
1+𝜆 (𝑇𝑠+𝑇𝑤) 𝑒𝜆𝑇𝑠

𝜆 (1−𝜌) , 𝑓 ′′
𝐴 = 𝜌,

𝑓 ′′
𝐿 = 1

𝜆𝐸[𝑇 ′′
𝑐 ] , 𝑓

′′
𝑆 = 𝑒𝜆 𝑇𝑠

𝐸[𝑇 ′′
𝑐 ] 𝑇𝑠, and 𝑓 ′′

𝑊 = 𝑒𝜆𝑇𝑠

𝐸[𝑇 ′′
𝑐 ] 𝑇𝑤.

Proof: The proof resembles that of Theorem 1. The cycle
structure is exactly as in Theorem 1. However, since now 𝑋𝑖 =
𝑇𝑠+𝑇𝑤 is a constant, the average number of batches queued at
the beginning of 𝐵𝑖, 𝑖 ≥ 1, is 1+𝜆(𝑇𝑠+𝑇𝑤−𝐸[𝑋 ∣𝑋 ≤ 𝑇𝑠]),
with 𝑋 the exponential time of arrival of the first batch in 𝑆.
Thus, the expression for 𝐸[𝑇 ′′

𝑐 ], which leads to the result, is:

𝐸[𝑇 ′′
𝑐 ]=𝑇𝑤+𝐸[𝐵0]+𝐸[𝑁 ](𝑇𝑆+𝑇𝑤+𝐸[𝐵1])+𝑇𝑠+

1

𝜆
.

III. VALIDATION

We validated our model against synthetic traces, i.e., batch
Poisson arrivals generated by means of a simulator, and real
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TABLE II
COMPARISON OF SIMULATION WITH REAL BIDIRECTIONAL TRACES (FROM GOOGLE DATA CENTERS), AND MODEL FOR UNIDIRECTIONAL 1000BASE-T

EEE LINKS (𝑇𝑤 = 16𝜇𝑠, 𝑇𝑠 = 182𝜇𝑠) WITH BATCH POISSON ARRIVALS

𝜌 𝐸[𝑆𝑝] 𝑚𝑌 [𝜇𝑠] 𝜎𝑌 [𝜇𝑠] 𝑓 ′
𝐴 [%] 𝑓 ′

𝐴 [%] 𝑓 ′
𝐿 [%] 𝑓 ′

𝐿 [%]
in/out [Bytes] trace with higher 𝜌 trace with higher 𝜌 traces model traces model

0.015 / 0.528 1497.3 (out) 22.68 (out) 185.20 (out) 52.87 ± 5.55 52.81 34.80 ± 5.38 36.63
0.087 / 0.074 944.4 (in) 87.01 (in) 307.88 (in) 15.31 ± 1.77 8.68 52.19 ± 1.83 65.70
0.008 / 0.041 748.4 (out) 145.17 (out) 233.96 (out) 4.78 ± 0.50 4.12 37.68 ± 0.42 46.05

traffic traces of 10 𝐺𝑏𝑝𝑠 and 1 𝐺𝑏𝑝𝑠 links obtained from
the CAIDA archive [7], [8], and from Google data centers,
respectively.1 Synthetic traces were generated with geometri-
cally distributed burst sizes, with success probability 𝑝𝑏, so
that 𝐸[𝑁𝑏] = 1/(1 − 𝑝𝑏). CAIDA traces were collected on
a 10 𝐺𝑏𝑝𝑠 backbone optical link, where the high aggregation
level makes traffic characteristics not far from Poisson, with an
arrival rate that changes over time but that can be considered
constant over a time scale of tens of minutes [9]. Google data
center traces were collected on 1 𝐺𝑏𝑝𝑠 server links, and they
are highly bursty.

Results for synthetic traces, not shown here due to lack of
space, match the model results with very high accuracy (as
expected, since our model is exact under such assumptions).

A good model accuracy is obtained also when considering
real traces. We use those real traces as input for an EEE link
simulator that computes the transmission time of each packet
in the input trace according to EEE specifications. Tables I
and II illustrate the results obtained with traces at different
rates and loads. We first use the real trace to compute the
offered load 𝜌, the average packet size 𝐸[𝑆𝑝], and the first
two moments of the packet interarrival time 𝑌 , namely the
average 𝑚𝑌 and the standard deviation 𝜎𝑌 , over the entire
input trace. Then we simulate the performance of the EEE
link, and compute the fraction of time spent in states 𝐴,
𝐿, 𝑆, and 𝑊 . Results are shown in the tables with 99%
confidence intervals. Later, we evaluate the model based on
the values of 𝐸[𝑆𝑝], 𝑚𝑌 , and 𝜎𝑌 . To this purpose, we consider
that, under the batch Poisson arrival approximation, and with
geometrically distributed burst sizes with parameter 𝑝𝑏, 𝑌 is
0 with probability 𝑝𝑏, and is exponentially distributed with
rate 𝜆 with probability 1 − 𝑝𝑏. Thus, 𝑚𝑌 = (1 − 𝑝𝑏)/𝜆, and
𝜎𝑌 =

√
1− 𝑝2𝑏/𝜆, which allows us to compute 𝜆 and 𝑝𝑏.

Table I shows that the model yields accurate estimates of
the fractions of time spent in state 𝐿 for 10 𝐺𝑏𝑝𝑠 links with a
large spectrum of loads and average packet sizes. Noticeably,
the time spent in low power mode is deeply affected by the
average packet size, e.g., with a load equal to 0.15 in a
10 𝐺𝑏𝑝𝑠 link, 𝑓 ′′

𝐿 can be as high as 17.68% when the packet
size is 636.4 bytes, while a very similar load value 𝜌 = 0.147
leads to 𝑓 ′′

𝐿 = 9.84% when the packet size decreases to 423.3
bytes.

Table II displays the results obtained by simulating bidirec-
tional 1000BASE-T links based on real traces. We compare
the simulation against an approximation, where we only model
the traffic in the direction with higher load. The table reports
the load measured for each link direction (𝑖𝑛 and 𝑜𝑢𝑡), and the
statistics that are used in the model. Note that the simulated
link can switch to low power mode only if the link is idle in

1Thanks to K. Fu, G. Chesson, L.A. Barroso and U. Holzle from Google
for providing the traces from their data centers, and to D Larrabeiti (Univ.
Carlos III, Madrid) for pre-processing Google and (part of) CAIDA traces.

𝑏𝑜𝑡ℎ directions, hence, 𝑓 ′
𝐴, as estimated from the traces, does

not correspond to the load. Model’s results are quite accurate
in case of highly asymmetric links, as shown in the first row
of Table II; instead, when the loads in the two directions are
comparable, the model overestimates the time spent in state
𝐿, nonetheless providing a reasonable estimate.

As expected, the amount of energy saving that can be
achieved heavily depends on the traffic burstiness. In fact,
considering as index of burstiness the ratio 𝜎𝑌 /𝑚𝑌 , we found
that 𝑓 ′

𝐿 and 𝑓 ′′
𝐿 can be very high either when the load is

very low (see traces with 𝜌 < 0.1 in the tables) or when the
standard deviation of interarrivals is significantly higher than
the average (see Table II). E.g., assume that, as suggested in
[3], the energy consumption in state 𝐿 is 10% with respect to
state 𝐴, while in states 𝑆 and 𝑊 the consumption is practically
the same as in state 𝐴; since non-EEE links are always in state
𝐴, the energy saving due to EEE for the cases of Table I, first
row, and Table II, first row, is ∼55% and ∼31%, respectively.

These results, and others for a large set of CAIDA traces
not shown here due to lack of space, show that the model can
be conveniently adopted to predict the energy saving that can
be achieved with EEE in a large range of scenarios.

IV. CONCLUSIONS AND FUTURE WORK

In this letter, we have presented and validated a model that
accurately predicts the time that a unidirectional EEE link
spends in each of its four possible states. The model can be
used with 100BASE-TX, 1000BASE-T and 10GBASE-T EEE
links, and its applications are twofold: (𝑖) evaluate the energy
saving achievable by replacing existing links with EEE links;
(𝑖𝑖) drive the design of traffic shaping mechanisms that would
increase the achievable energy saving. In fact the model can
be used to analyze the consumption of links in which a timer
is used to collect frames before starting a link activation.
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