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Abstract—This paper addresses the slicing of Radio Access
Network (RAN) resources by multiple tenants, e.g., virtual
wireless operators and service providers. We consider a criterion
for dynamic resource allocation amongst tenants, based on a
weighted proportionally fair objective, which achieves desirable
fairness/protection across the network slices of the different
tenants and their associated users. Several key properties are
established, including: the Pareto-optimality of user association
to base stations, the fair allocation of base stations’ resources,
and the gains resulting from dynamic resource sharing across
slices, both in terms of utility gains and capacity savings. We
then address algorithmic and practical challenges in realizing
the proposed criterion. We show that the objective is NP-hard,
making an exact solution impractical, and design a distributed
semi-online algorithm which meets performance guarantees in
equilibrium and can be shown to quickly converge to a region
around the equilibrium point. Building on this algorithm, we
devise a practical approach with limited computational, infor-
mation, and handoff overheads. We use detailed simulations to
show that our approach is indeed near-optimal and provides
substantial gains both to tenants (in terms of capacity savings)
and end-users (in terms of improved performance).

I. INTRODUCTION

Driven by the capacity requirements forecasted for future
mobile networks as well as the decreasing margins obtained
by operators, infrastructure sharing has established itself as
a key business model for mobile operators to reduce the
deployment and operational costs of their networks (e.g., [1]
reports a 280% increase in deals within the last 5 years).
While passive and active sharing solutions, ranging from
exclusive allocation of resources to roaming agreements, are
used and have been standardized, these sharing approaches
are based on fixed contractual agreements with Mobile Virtual
Network Operators (MVNO) over long time periods (typically
on a monthly/yearly basis). In this paper, we focus on a
structured dynamic slicing approach which enables a much
more efficient sharing of network resources, as envisioned by
the 3GPP Network Sharing Enhancements for future mobile
networks which the authors contributed to [2]. Following [3],
our approach divides the infrastructure into network slices,
assigning a different slice to each operator, and implements the
sharing of network resources among operators by dynamically
allocating resources to slices.

Such a novel network slicing approach is expected to result
in new business models and revenue sources for infrastructure
providers.1 Indeed, this approach supports not only classical

P. Caballero and G. de Veciana are with the University of Texas at Austin.
A. Banchs is with the University Carlos III of Madrid and with the Institute
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1See for instance the envisioned roles defined by the organization of
telecommunication operators NGMN for 5G [3].

players (mobile operators) but also new ones such as Over-
The-Top (OTT) service providers that may buy a slice of the
network to ensure satisfactory service to their users (e.g., Ama-
zon Kindle’s support for downloading content or a pay TV
channel including a premium subscription). In the literature,
the term tenants is often used to refer to the different types
of players, and multi-tenancy refers to approaches enabling
dynamic network slicing and resource sharing for multiple
tenants. For simplicity, hereafter we use the term operator in
a broad sense to refer to classical (virtual) operators as well
as the new players enabled by this approach.

In designing a practical solution for dynamic resource
sharing among slices we face multiple challenges. To start
with, we need a sharing criterion that not only allocates
resources to operators (and their corresponding slices) fairly,
but also, shares the resources of each operator fairly among
its users. Furthermore, the criterion should allow for flexible
sharing “levels” to meet operators’ heterogeneous require-
ments; for practical purposes, these levels should be coarse-
grained, rather than based on instantaneous resource needs.
When allocating resources to an operator, one should take
into account the numbers and locations of active users on the
network – indeed some locations may see higher demand and
(consequently) the associated resources might be scarce.

Beyond the criterion itself, designing an algorithm to imple-
ment it, while realizing timely adaptation to network changes,
is also very challenging. Given the amount of information
involved (including the channel quality of each user) and its
dynamic nature, the algorithm should be as distributed as
possible. Also, since the algorithm may be triggered frequently
(whenever a user joins, leaves or changes its location), it
should be computationally efficient. When adapting to network
changes, the algorithm should control the number of handoffs
triggered, as those may represent a high overhead.

Key contributions: This paper proposes a criterion for slicing
the network infrastructure amongst operators and an algorithm
to allocate resources accordingly. The key contributions are as
follows. In Section II, we introduce a criterion for dynamic
resource sharing among operators; while the criterion has been
proposed before, we provide a characterization supporting its
use in a multi-tenant network setting. These properties are
developed in Section II-C, providing insights on the optimality
and fairness of the resulting allocations, and the benefits
are studied in Section II-D, by characterizing the capacity
savings by means of a closed-formula. We show that the
criterion not only improves overall network utility but also that
of each individual operator, thus guaranteeing that operators
are not harmed by the sharing of resources amongst slices.
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In Section III-A, we show the criterion corresponds to an
NP-hard problem, motivating the need to devise an efficient
approximation algorithm which is introduced in Section III-B.
The proposed algorithm is semi-online, distributed, incurs low
computational complexity, and has been specifically designed
to control overheads associated with handoffs and/or mobile
user reassociations. We rely on several intermediate analytical
results to drive the key design choices underlying our algo-
rithm. One of these intermediate results, presented in Section
III-B2, is a variation of the algorithm which achieves similar
performance bounds to state-of-the art algorithms while being
distributed – which is in itself a valuable theoretical con-
tribution on state-of-the-art approaches. Section IV provides
a comprehensive performance evaluation based on detailed
simulations, showing that (i) operators can save up to 80%
capacity while providing the same quality to their users, and
(ii) for a fixed capacity, we improve user performance in terms
of file download times by up to 30%, among other results.

Related work: We next review and contrast our work to the
state-of-the-art in (i) resource allocation based on proportional
fairness, and (ii) resource sharing among operators.

Considerable research effort has been devoted to address the
problem of fair resource allocation in networks. In wireline
networks, fair resource allocation based on utility function
maximization has been extensively studied following the sem-
inal work of [4]. Building on this work, further algorithms
for congestion control in multi-path environments have been
proposed [5]–[7]. Not unlike our work, these algorithms are
distributed. However, they allow users to decide among mul-
tiple routes while we focus on a wireless setting where each
user can only use one resource (her base station).

In the specific context of wireless networks, several ap-
proaches have been proposed [8]–[10] to the problem of
resource allocation and user association based on weighted
and unweighted proportional fairness, respectively. The un-
weighted case has been largely studied in the literature in
different contexts (e.g., power control [11], interference avoid-
ance [12]). The authors of [8] and [12] analyzed the complex-
ity of the problem and proved the existence of polynomial
time algorithms which provide an exact solution, and [10]
designed a distributed algorithm with convergence guarantees.
In contrast to the above, the resource allocation criterion
proposed in this paper relies on weighted proportional fairness,
with operator-specific weights; this is a more difficult problem
as it is NP-hard [8] and the convergence of distributed greedy
algorithms cannot be guaranteed [13].

Weighted proportional fairness resource allocation in wire-
less networks has received much less attention. In [9], an
algorithm with tight worst-case performance bounds of log(2)
is proposed, while [14] proposes an heuristic algorithm. In
contrast to the distributed approach proposed in this paper,
both algorithms are centralized, which are expected to perform
better since they possess global network information. However,
the performance bound of the proposed distributed algorithm
is log(e), close to the bound in [9]. The authors of [15],
[16] propose a Gibbs-sampling mechanism based on simulated
annealing that converge to an optimal solution. However, the

convergence of this mechanism is known to be slow and for
this reason they resort to a greedy solution, with the same spirit
of our algorithm. For the latter, the authors neither provide
performance bounds nor analyze convergence of the proposed
algorithm; additionally, the overhead of these algorithms is
not controlled, which limits their practical deployment. All the
approaches mentioned above address the problem of a single-
operator network, in contrast to our work which focuses on
the slicing and sharing of resources among multiple operators.

Multi-operator network sharing has been studied from many
different angles, including planning [17], economics [18], cov-
erage [19], performance [20], etc. This paper focuses specifi-
cally on the design of algorithms for resource sharing among
operators, which has been previously addressed by [21]–
[23]. In [21], the optimization of the total network utility is
addressed by using max-min fairness; in contrast, the criterion
that we propose here relies on weighted proportional fairness,
which (as we show) provides many desirable properties. The
works of [22], [23] present a proportional fair formulation
similar to ours; however, they do not provide a rationale
for their choice, in contrast to the solid analytical arguments
provided in this paper. Furthermore, [22] does not address the
algorithm design, while [23] uses a general non-linear solver
that incurs a very high computational complexity (as confirmed
by our results of Section IV-D). To the best of our knowledge,
this paper is the first to propose an efficient algorithm for
multi-tenant network slicing that builds on analytical results.

II. RESOURCE ALLOCATION CRITERION

In this section, we formulate the optimization problem that
will drive (i) the association of users to base stations, and (ii)
the allocation of base stations’ resources to users. Hereafter,
we refer to this optimization as the multi-operator resource
allocation (MORA) criterion. We show analytically that the
criterion satisfies desirable properties in terms of optimality
and fairness, and develop a simple model to evaluate the
potential sharing gains of our network slicing approach.

A. System model

We start by presenting our system model which was de-
veloped with LTE/LTE-A systems in mind, but is generally
applicable to cellular systems. Consider a network consisting
of a set B of base stations (or sectors in case of sector
antennas) that are shared by a set of operators O. At any given
time, we let U denote the set of users sharing the network and
Uo, o ∈ O the subsets of users belonging to each operator.
We let cub denote the current transmission rate from base
station b to user u, which is defined as the rate the user would
receive if she were allocated all of the base station’s resources
with the modulation-coding scheme selected for transmissions
to the user based among others on path loss, neighbouring
stations interference and fast fading; following similar analyses
in the literature [21]–[25], we shall assume that cub is fixed
for each {user, base station} pair. An allocation of resources
involves two sets of variables: (i) the association of users
to base stations, denoted by x = (xub : u ∈ U , b ∈ B),
where each user u is associated with a single base station, i.e.,
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xub = 1 for one of the base stations and 0 otherwise, and (ii)
the allocation of the resources of each base station among its
associated users, denoted by f = (fub : u ∈ U , b ∈ B), where
fub is the fraction of the base station b’s resources which are
allocated to user u. Thus the rate allocated to user u, ru(x, f),
under a given allocation of resources, is given by

ru(x, f) :=
∑

b∈B
fubxubcub.

B. MORA criterion

In line with previous approaches [21]–[23], the underlying
assumption behind our criterion is that operators share the
cost of deploying and/or maintaining the infrastructure, and
the resources received by each operator should be based on
the level of its (financial) contribution to the shared network:
if an operator contributes twice as much as another, it should
roughly get twice the resources. To this end, each operator is
assigned a network share so ∈ [0, 1], to represent its level of
contribution to the network. Without loss of generality, these
shares are normalized so that

∑
o∈O so = 1.

The proposed criterion allocates resources across operators
dynamically, tracking changes in the numbers and locations
of operators’ mobile users and the associated transmission
rates cub. When doing this, we need to make sure that
(i) network resources are fairly shared among the various
operators according to their share, and (ii) at the same time,
the resources allocated to a given operator are fairly shared
among the users of that operator. To achieve this, we follow
an approach akin to that in [26]2: we maximize the overall
network utility resulting from aggregating operator utilities,
where the utility of an operator is in turn the aggregation of
its users’ utilities.

To aggregate operators’ utilities, we define the overall
network utility as the weighted sum of operators’ utilities,

W (x, f) =
∑

o∈O
soUo(x, f),

where, by weighting the utility of an operator by its share,
we ensure that operators with larger shares are allocated
more resources. We further define the operator utility as the
sum utility of the operator’s users, where a user’s utility is
logarithmic in its rate, i.e.,

Uo(x, f) =
1

|Uo|
∑

u∈Uo
log(ru(x, f)),

where the operator utility is normalized by the number of users
of the operator to align the utility values of operators with
different numbers of users.

By combining the above equations, one can rewrite the
network utility as follows:

W (x, f) =
∑

o∈O

∑

u∈Uo
wu log(ru(x, f)), (1)

2Reference [26] addresses a similar problem to ours in the context of users
and flows, as it aims at allocating resources fairly to users while preserving
fairness among the flows of each user.

where the user weights wu are defined as the operator network
share divided by the total number of users of the operator,
i.e., wu = so/|Uo| (in simple terms, the network share of an
operator is divided equally amongst its current users).

With the above, we can now formulate the MORA opti-
mization problem as follows:

max
x,f

W (x, f), (2a)

subject to:

ru(x, f) =
∑

b∈B
fubxubcub, ∀u (2b)

∑

b∈B
xub = 1 and xub ∈ {0, 1}, ∀b, u (2c)

∑

u∈U
fubxub ≤ 1 and fub ≥ 0, ∀b, u. (2d)

In the sequel we shall let xMORA, fMORA denote a (possibly
not unique) optimal solution to this optimization problem.

At any given time the above optimization corresponds to
the weighted proportional fair criterion (see e.g. [4]) extended
to a multi-operator setting. In such multi-operator setting,
individual user utilities within the network utility are not as
important as operators’ utilities, given by the sum of the
respective user utilities. Also, as users’ weights depend on
operator shares and their associated number of active users,
these affect the interaction among the operators’ spatial loads
when sharing the network.

C. Properties of MORA Resource Allocation

Next, we show that the MORA criterion satisfies some
desirable properties both in the way base stations’ resources
are allocated to associated users, and the way users are
associated with base stations.

1) Per-base station resource allocation: Let us first con-
sider a general setting, where user associations to base stations
are fixed, to see how MORA allocates base station resources.
Let x∗ be the fixed (not necessarily optimal) user to base
station association. If we optimize the resource allocation f
for this user association, i.e., maxf W (x∗, f) subject to (2b)
and (2c), it can be seen from Lemma 5.1 of [9] that the
resulting resource allocation is unique and given by fM (x∗) =
(fMub (x∗) : u ∈ U , b ∈ B), where

fMub (x∗) =
wux

∗
ub∑

v∈U wvx∗vb
. (3)

Further if x∗ = xMORA, then fM (x∗) = fMORA, i.e., we
have MORA optimal allocation of network resources.

The above result is fairly intuitive. Users associated with
a given base station are allocated resources proportionally to
their weights wu. This can be viewed as follows. The share
of an operator represents the total budget of the operator.
When assigning a weight wu = so/|Uo| to users, this share is
distributed among the operator’s users, and hence the user’s
weight represents the budget of a user. As the resources
allocated to a user are inversely proportional to the sum
of weights at her base station, the sum of weights can be
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viewed as the cost of a unit of resource at the base station.
Thus, operators with users associated with heavily loaded base
stations will have to pay a higher cost (e.g, increase their
network share or limit their overall number of users) or receive
fewer resources.

The above shows that the number of active users that op-
erators have on the network and their spatial distribution will
impact the resources the are allocated under MORA. Indeed,
allocations across base stations are coupled together through
|Uo|, i.e., an operator with a large number of active users will
have lower weights and likely lower per-user allocations. At
the same time, the resources obtained by an operator heavily
depend on the load at base stations to which its users will be
associated with.

2) Characteristics of user association: Next we study the
properties of MORA user associations.

The first result, which follows from the optimality of
MORA allocations, is that the resulting resource allocations is
Pareto-optimal, which means that for any alternative allocation
(x′, f ′) for which ru(x′, f ′) > ru(xMORA, fMORA) for some
u, we necessarily have rv(x′, f ′) < rv(xMORA, fMORA) for
some v 6= u. Indeed, if this was not the case then W (x′, f ′)
would be larger than W (xMORA, fMORA), which contradicts
the fact that the optimal MORA allocation (xMORA, fMORA)
maximizes W (x, f).

Thus, Pareto optimality in this context means that if under
some other user association choice, a user sees a higher
throughput than that under MORA then there must be another
user which sees a lower throughput allocation. Note that
this need not always be the case. Consider, for instance, a
network with |U| users, such that the largest cub of each
user corresponds to a different base station. While the optimal
allocation would associate each user to the base station with
largest cub, a criterion based on local decisions that looks at
users one by one may lead to a different association. The above
result guarantees that this will not happen under MORA.

While the above shows the optimality of MORA user
associations, it leaves the question of whether this is achieved
at the detriment of some operator. The following theorem
establishes that if an operator could unilaterally change its
users’ associations to improve its own utility, it would obtain
a limited benefit. This suggests that MORA is not harming
any operator for the global benefit: if it did so, such an
operator would likely obtain a large gain by modifying its
users’ associations.

Theorem 1. Consider an optimal solution (xMORA, fMORA)
to MORA. Suppose operator o ∈ O unilaterally modifies its
users’ associations leading to a new overall user association
vector x′, and that resources at each base station are allocated
according MORA’s resource allocation fM (x′) as given by (3).
Then, the overall change in utility for operator o, denoted by
∆Uo, is bounded below by − log(e), i.e.,

∆Uo
.
= Uo(xMORA, fMORA)− Uo(x′, fM (x′)) ≥ − log(e).

Proof. See the Appendix.

The above result also shows that if an operator had control
over its users’ associations, it would not be able to significantly

increase its own utility (at the detriment of others) by deviating
from MORA optimal user associations.

D. Gains and Savings

In the following we evaluate the benefits of having MORA-
based infrastructure slicing. To that end, we introduce a simple
baseline – static slicing (SS), a proxy for not sharing resources
at all.

1) Static Slicing (SS) Baseline: This baseline assume
that each operator contracts for a fixed slice/fraction so of
the network resources at each base station, i.e., the allocation
of resources in each station is static and correspond to the
assignation of so fraction of resources of every station to
operator o. The operator can of course still optimize its users
associations, xo = (xub : u ∈ Uo, b ∈ B), and allocation of its
so resources among its users, fo = (fub : u ∈ Uo, b ∈ B), so
as to maximize its utility. Specifically each operator o ∈ O can
determine its user association and resource allocations based
on:

max
xo,fo

Uo(xo, fo) (4)

subject to ru(xo, fo) =
∑

b∈B
fubxubcub, ∀u ∈ Uo,

∑

b∈B
xub = 1, ∀u ∈ Uo,

∑

u∈Uo
fubxub ≤ so, ∀b ∈ B,

xub ∈ {0, 1}, fub ≥ 0, ∀b ∈ B,∀u ∈ Uo.
This is similar to MORA except limited to the operator o’s
current users Uo and the resource constraint is restricted only to
the fixed slice so allocated to the operator at each base station.
Although the user associations and resource allocations under
static slicing are independently optimized by each operator, we
shall let xSS , fSS be a (possibly not unique) optimal choice
across all operators under static slicing. Also paralleling our
discussion of MORA, it is easy to show that if one fixes a
feasible user association x∗, (4) is convex and yields resource
allocations given by

fS(x∗) := (f∗ub(x
∗) : ∀u ∈ U ,∀b ∈ B),

where
f∗ub(x

∗) =
x∗ubso∑
v∈Uo x

∗
vb

1{u ∈ Uo}, (5)

i.e., this is again a weighted proportionally fair allocation of
the operators’ slice of the base station resources.

2) Operator Utility Gains and Protection: The overall net-
work utility under MORA is clearly larger than that under the
more constrained allocations possible under SS. This however
does not guarantee that a given operator’s utility under MORA
is greater than that under SS. Below we show that for the same
user association an operator utility under MORA exceeds that
under SS, indicating that beyond the overall network utility,
we have that each operator is indeed better off. This shows
that MORA effectively protects operators when sharing their
resources with other operators.
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Theorem 2. For a given user association x, MORA’s resource
allocation fM (x) (see Eq. 3) achieves a higher utility than that
of SS given by fS(x) (see Eq. 5), i.e., for all o ∈ O

Uo(x, fM (x)) ≥ Uo(x, fS(x)).

Proof. See the Appendix.

Theorem 2 does not take into account that SS and MORA
may choose different user associations. The following result
takes this into account giving a bound on the possible operator
utility gap.

Theorem 3. The optimal utilities under MORA and SS are
such that for all o ∈ O

Uo(xMORA, fMORA)− Uo(xSS , fSS) ≥ − log(e).

Proof. See the Appendix.

This analysis suggests that there may be cases in which an
operator sees a higher utility under SS than MORA, but the
additional utility can be no more than log(e).

3) Capacity Savings: Next we consider the capacity savings
resulting from operators sharing infrastructure. Specifically we
compare the spectrum capacities, i.e., total amount of resource,
required to achieve the same average utility per operator under
MORA and SS. The aim is to give some intuition on the typical
savings one might expect and its dependence on the network
load, number of operators and their shares. For tractability we
will examine a scenario where traffic is spatially homogenous
and operators’ network shares are proportional to their load.

We consider a network model in which there is a fixed
total number of users |U| of which each operator contributes
a fixed number of users proportional its network share so, i.e.,
no = so|U| which are assumed to be integer valued. Each
operator’s users are randomly (uniformly) distributed amongst
the |B| base stations, so the number of users of operator o
associated with base station b, is given by a random variable
No,b, such that No,b ∼ Binomial(no, 1

|B| ). The total number
of users at base station b is denoted by a random variable
Nb =

∑
o∈ONo,b ∼ Binomial(|U|, 1

|B| ). We also assume for
simplicity that users have the same capacity cub = c to the
base stations with which they associate.

Note that under the above traffic model all users u have
the same weight wu = so

no
= 1/|U|. Thus expected overall

network utility under MORA is given by:

W̄ = E

[∑

o∈O

∑

b∈B
Nobwu log

(
c

Nb

)]
= E

[∑

b∈B

∑

o∈O

Nob

|U| log

(
c

Nb

)]

= E

[∑

b∈B

Nb

|U| log

(
c

Nb

)]
=

|B|
|U|E

[
Nb log

(
c

Nb

)]
,

where the last equality follows by using the uniformity of
traffic across base stations. Moreover, under our model the
network utility W̄ is the average utility across all users, which
by symmetry is equal to the expected utility of a given operator
o under MORA, i.e., ŪMORA

o = W̄ .
Now applying Taylor’s approximation to the function

x log(c/x) at E[Nb] we obtain

Nb log

(
c

Nb

)
≈ E[Nb] log

(
c

E[Nb]

)
+

[
log

(
c

E[Nb]

)
− 1

]
·

(Nb − E[Nb])−
1

2E[Nb]
(Nb − E[Nb])

2,

which in turn gives

E
[
Nb log

(
c

Nb

)]
≈ E[Nb] log

(
c

E[Nb]

)
− 1

2E[Nb]
Var(Nb).

Since Nb ∼ Binomial(|U|, 1
|B| ) we have that Var(Nb) =

|U|
|B| (1− 1

|B| ) ≈
|U|
|B| , and so

ŪMORA
o ≈ log

(
c

E[Nb]

)
− |B|

2|U| . (6)

Let ∆o denote the extra capacity that operator o would
require under SS to achieve the above utility. The expected
utility experienced by operator o under SS is given by

ŪSS
o = E

[∑

b∈B

No,b

no
log

(
soc(1 + ∆o)

No,b

)]

=
|B|
no

E
[
No,b log

(
soc

No,b

)]
+ log(1 + ∆o).

Again using a Taylor expansion this can be approximated
as

ŪSS
o ≈ log

(
soc

E[No,b]

)
− |B|
no

Var(No,b)

2E[No,b]
+ log(1 + ∆o).

Noting that Var(No,b) ≈ so |U||B| = no

|B| we have that

ŪSS
o ≈ log

(
c

E[Nb]

)
− |B|

2no
+ log(1 + ∆o). (7)

Finally equating the expected utilities, i.e., (6) and (7), we
obtain the following estimate of the necessary extra capacity
∆o required when static slicing rather than MORA is used:

log(1 + ∆o) ≈ |B|
2no
× (1− so). (8)

where under our traffic load model no = so|U|.
This result gives a clear intuition on the possible savings

resulting from sharing the infrastructure with MORA dynamic
slicing. In particular, the savings increase exponentially in the
product of two terms. The first is inversely proportional to
the average number of users operator o has per base station,
i.e., no/|B|; indeed, if the operator has a large number of
users, its multiplexing gain is already high without sharing the
infrastructure, and hence there is little gain from sharing. The
second term is large when the operator has a small network
share: if its share is high, the operator is using most of the
network resources and there is little sharing.

In summary, capacity savings will be highest when infras-
tructure is shared by a large number of operators each with
a small number of users per base station. With current trends
towards small cells, the number of users per base station is
expected to be small, suggesting that infrastructure sharing
may be particularly beneficial.
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III. APPROXIMATION ALGORITHM FOR
MORA

The analysis in previous section and simulations to be
presented in the sequel suggest that MORA resource allocation
across operators not only has desirable characteristics but will
make efficient use of resources while protecting operators
from one another. Unfortunately, as we show below, the
complexity and information overheads associated with doing
so for are already high for a static system, and excessive when
operators’ mobile users and associated channels are subject to
constant change. In this section we further discuss the state-
of-the-art algorithms to tackle MORA, and then propose an
approximation algorithm based on a sequence of theoretical
results and insights that support the design.

A. Complexity and State-of-the-Art Algorithms

The optimization problem underlying MORA is a non-
linear integer programming problem, which can be shown to
be NP-hard and hence there is no polynomial time algorithm
unless P = NP .

Theorem 4. The MORA problem is NP-hard.

Proof. See the Appendix.

There have been a number of works in the literature devoted
to solving problems similar to MORA. In particular, [9] pro-
poses an approximation algorithm for the single operator case
with guaranteed performance bounds. However, their approach
is still computationally demanding; indeed, the results in
Section IV-D, show that for a network with only 100 users, the
algorithm takes 20 seconds on a dual-core 2.8GHz processor.
Given that this would need to be executed every time cub
values change or new users enter/leave the network, this seems
computationally impractical. Moreover the proposed approach
is centralized, so there would be a substantial information
overhead to gather the cub of each user to each potential
base stations, given the amount of data and dynamic nature of
mobile users.

In the multi-operator setting, [23] proposes an approach
based on using a standard non-linear solver to address a
problem similar to MORA. Unfortunately the approach is also
very complex and centralized. Indeed, our evaluation of this
proposal in Section IV-D, shows that the time required to
execute this algorithm increases sharply with the number of
users, making it impractical at about 50 users. Moreover, [23]
does not provide any analytical performance bounds.

In summary, to make dynamic multi-operator resource shar-
ing possible, a new radically simplified approach is required.
It should have low computational complexity and be based on
distributed operation requiring only local information, to allow
near real-time operation.

B. Algorithm design

In the following, we devise an algorithm for MORA that
can be used in practical deployments. In contrast to previous

approaches, our algorithm involves a low computational com-
plexity and relies on data that can be gathered from neighbor-
ing base stations, allowing for a distributed implementation.3

Given the user dynamics, i.e., joining, moving and leaving
the network, an offline algorithm that computes an optimal re-
source allocation for a fixed set of users is impractical. Instead,
we will pursue an approach that tracks users dynamics, and
occasionally adjusts resource allocations by modifying current
or new users’ associations. Since reassociations of current
users correspond to handoffs, their number should be kept to
a minimum. To design such an algorithm, we need to answer
the following questions:

• Do we really need to reassociate users?
• Where should users be (re)associated to?
• In which order should users be reassociated?
• How many reassociations do we need?

For each of these questions, in the following we provide
some theoretical analysis that eventually leads to our proposed
algorithm. In all cases, once a user association x is set,
resources at each base station are allocated according MORA’s
resource allocation fM (x).

1) Need for reassociations: Following the standard termi-
nology of online algorithms, we say that an algorithm is online
if, upon a user joining the network, it only decides how to
associate the new user, without triggering any reassociations
of existing users. We say the algorithm is semi-online if it can
further trigger reassociations of a limited number of users.
Thus our first question is whether an online algorithm would
suffice. The following theorem suggests that the performance
of an online algorithm can be arbitrarily bad, motivating us to
consider semi-online approaches.

Theorem 5. Consider an online algorithm that triggers no
reassociations of existing users. Let (x′, f ′) denote the solution
resulting from this algorithm and (xMORA, fMORA) a MORA
optimal solution. Then, W (xMORA, fMORA)−W (x′, f ′) can-
not be bounded.

Proof. See the Appendix.

2) Criterion for (re)associations: Next we address the
question regarding how to associate, or reassociate, users to
base stations. In particular, consider a Distributed Greedy
algorithm wherein we iteratively examine (in arbitrary order) if
there is a user which could change her association to increase
her rate, and if this is the case, she chooses to re-associate
with the base station providing the largest rate. The following
result characterizes the performance of this algorithm if an
equilibrium is reached.

Theorem 6. Let (x′, f ′) be an equilibrium allocation for
the Distributed Greedy algorithm, and (xMORA, fMORA) a
MORA optimal solution, then

W (x′, f ′) ≥W (xMORA, fMORA)− log(e).

Proof. See the Appendix.

3Note that, while the algorithm implementation is distributed, the logic is
centralized: i.e., we assume that the algorithm is run centrally by a single
entity, without the intervention of the different operators.
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Note we have not established the convergence of this
algorithm. The convergence of this type of algorithms has
received substantial attention in the literature [13], [27], [28].
Indeed, since the throughput of user u is an increasing function
of cub/

∑
v∈U wvxvb, the Distributed Greedy algorithm can

be viewed as a congestion game in which the load at a base
station is given by the sum of weights of the users at the
base station, lb =

∑
v∈U wvxvb, and a user seeks to minimize

aublb, where aub = 1/cub. This game falls in the category
of a singleton weighted congestion game with player-specific
multiplicative constants and linear variable cost. Based on the
lack of a counter-example and the existence of polynomial-
time algorithms for special cases, [27] conjectures that this
type of games have an equilibrium (see Conjecture 3.7 of [27]).
Based on the simulations we have run for numerous instances
of the game, we further conjecture that the Distributed Greedy
algorithm (which implements a best response dynamics) con-
verges to this equilibrium.

With the above conjecture, the Distributed Greedy approach
represents a valuable theoretical contribution from an al-
gorithmic perspective, as it solves MORA problem with a
performance bound similar to state-of-the-art solutions but
in a distributed manner and with much lower computational
complexity (see the results of Section IV-D).

In particular, Distributed Greedy satisfies W (x′, f ′) ≥
W (xMORA, fMORA) − log(e), while [9] proposes
an algorithm that provides a throughput larger than
ru(xMORA, fMORA)/(2 + ε) to all users, which translates
into W (x′, f ′) ≥ W (xMORA, fMORA) − log(2 + ε); hence,
the algorithm of [9] provides only a slightly tighter bound
than Distributed Greedy.

3) Order of reassociations: While our analysis of the Dis-
tributed Greedy algorithm suggests a user should (re)associate
to maximize her rate, it does not indicate in which order user
reassociations should be considered to speed up convergence.
To address this, we consider the Greedy Largest Gain algo-
rithm, which operates as the Distributed Greedy algorithm but
at each iteration updates the association of the user achieving
the highest gain, i.e., the one achieving the largest rnewu /roldu ,
where roldu is the user’s current throughput and rnewu is the
throughput she would receive under the improved association.

The following theorem shows that the Greedy Largest Gain
algorithm exhibits a desirable convergence property. In partic-
ular, one can guarantee that at each iteration the network utility
increases until it reaches W (xMORA, fMORA)−2 log(e), and
from then on it never decreases below W (xMORA, fMORA)−
(2+maxu wu) log(e).4 Note that Distributed Greedy does not
exhibit this kind of behavior: if we select users in an arbitrary
order, the network utility may decrease at any iteration (as the
increase in utility of the reassociated user may be smaller than
the decrease experienced by the other users).

Theorem 7. Let (xi, f i) be the solution at the ith

iteration of the Greedy Largest Gain algorithm and
(xMORA, fMORA) a MORA optimal solution. Then
W (xi, f i) increases at each iteration until W (xi, f i) ≥

4Note that, if all operators have a large number of users, we have that
2 + maxu wu ≈ 2.

W (xMORA, fMORA) − 2 log(e), and thereafter it never
decreases below W (xMORA, fMORA)−(2+maxu wu) log(e).

Proof. See the Appendix.

Note that while this is not exactly a convergence result,
it asserts that resource allocations are such that the network
utility is close to optimal.

4) Proposed algorithm: Greedy Local Largest Gain. Based
on the above considerations we now propose our algorithm for
MORA, the Greedy Local Largest Gain algorithm. We shall
first describe how it operates at a high level, and then provide
a more detailed algorithmic description. When a user joins
the network, she greedily joins the base station providing the
largest throughput. However, as we have seen, we may need to
consider triggering user reassociations. To limit their number
and associated handoffs overheads we constrain these to at
most m. For the first m − 1 reassociations, users choose the
base station that provides the largest throughput, but in the mth

the user chooses the base station so as to maximize the network
utility W (x, f). In each of these steps, we select which user
to reassociate (if any) based on Greedy Largest Gain criterion,
but instead of considering all users in the network, involving
possibly a high overhead, we restrict the selection locally to
users associated with only two base stations (see below).

At a more detailed level, the algorithm needs to consider
the following cases: (i) a user joins the network, (ii) leaves,
or (iii) changes her location. The algorithm for a joining user
is detailed in the pseudocode of next page. The rationale is as
follows. In the optimal allocation, users are somehow balanced
among base stations, users’ weights playing a role in this
balance. When a new user joins the network, the balance is
broken and the base station with which the user associates may
have too many users. Hence, in the first step we reassociate
one of the users of this base station. In the next step, the base
station that received the reassociated user may have too many
users; however, depending on the weights of the joining and
reassociated users, the original base station may still have too
many users as well. Hence, we consider the users from the two
base stations as candidates for reassociation. We repeat this,
considering users from two base stations, in the subsequent
steps. Finally, in the last step, to avoid that the reassociation
of a user harms the overall performance, we select the base
station association that maximizes the overall network utility
rather than the throughput of the reassociated user.

When a user leaves the network, the algorithm is quite
similar (pseudocode omitted for space reasons). When she
moves, her cub values to the neighboring base stations may
change; if, as a result of these changes, at some point the
user would receive a larger throughput in a new base station,
we reassociate her to this base station. Then, the old base
station executes the same algorithm as when a user leaves the
network while the new base station executes the algorithm
corresponding to a joining user.

5) Controlling the number of reassociations: The remain-
ing question is how to set the limit on the number of
reassociations m, which determines the trade-off between the
performance of the algorithm and reassociation overhead. Such
trade-offs have been analyzed for a similar setting in [29],
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Algorithm 1: GLLG user joining.
Definitions:
rv,b : throughput of user v if she associates to b;
rv : current throughput of user v;
Ub : set of users associated to b, (u ∈ U s.t. xu,b = 1);
U{c∪p} : set of users associated to c or p;
Wu,q : network utility if user u associates to q;
Input: x
User v joins the network:
b′ = arg max

b∈B
rv,b;

xv,b′ = 1← Associate user v with base station b′;
[u∗, p∗] = arg max

(u,p)∈Ub′×B

ru,p

ru
;

if ru∗,p∗/ru > 1 then
Associate user u∗ with base station p∗, xu∗p∗ = 1;

else
stop

c = p∗ (current base station);
p = b′ (previous base station);
for m− 1 times do

[u∗, q∗] = arg max
(u,q)∈U{c∪p}×B

ru,q

ru
;

if ru∗,q∗/ru > 1 then
Associate user u∗ with base station q∗, xu∗q∗ =
1;
c← q∗; p← previous base station of user u∗;

else
stop

W ← current network utility;
[u∗, q∗] = arg max

(u,q)∈U{c∪p}×B

Wu,q

W ;

if Wu∗,q∗/W > 1 then
Associate user u∗ with base station q∗, xu∗q∗ = 1;

which aims to distribute tasks among servers (where each
task can only be associated to a restricted set of servers)
in such a way that the maximum load across all servers is
minimized. This problem is similar to ours, with tasks and
servers corresponding to users and base stations respectively,
in the particular case where all users have the same wu and
cub. Not unlike their setting, the performance in this case is
optimized when base station loads are as balanced as possible
(i.e., the highest load is minimized). According to the analysis
of [29], the performance in terms of the highest load with our
algorithm (which has a limit of m reassociations) over the
highest load with the optimal algorithm (with no constraint
m) is given by O(e1−

m
ln|B| ). This shows that algorithm’s per-

formance improves rapidly (exponentially) in m, and suggests
a small m suffices to achieve near-optimal network utility.

To further explore the impact of m on network utility, we
present the following simulation results (see Section IV for
a description of the simulation setup). Here, W (m) is the
network utility achieved for a given m value, W (∞) is the
utility with unconstrained overhead, W (0) is the utility with
no reassociations, and GW (m)

.
= 1− W (m)−W (∞)

W (0)−W (∞) represents
the normalized utility gain with m reassociations, showing
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Fig. 1. Normalized utility gain as a function of m.

how close we get to the unconstrained overhead utility. Fig. 1
depicts this gain as a function of m for different scenarios. As
can be seen, utility gains increase very sharply. Furthermore,
for m = 3 the gains are already very close to their maximum
value; based on this, we set m equal to 3 (this is indeed the
value used in the experiments of Section IV).

IV. PERFORMANCE EVALUATION

Next, we evaluate the performance of our proposed ap-
proach. The mobile network scenario considered is based on
the IMT Advanced evaluation guidelines for dense ‘small
cell’ deployments [30]. It consists of base stations with an
intersite distance of 200 meters in a hexagonal cell layout with
3 sector antennas (thus in this setting users will associate with
sectors rather than the base stations we used in our algorithm
description). The Signal Interference to Noise Ratio (SINR) is
computed as in [25], SINRub = Pbgub/(

∑
k∈B,k 6=b Pkguk +

σ2), where Pb is the transmit power and gub denotes the
channel gain between user u and base station b, which includes
path loss, shadowing, fast fading and antenna gain. Following
[30], we set Pb = 41 dBm, σ2 = −104dB, path loss
equal to 36.7 log10(dist) + 22.7 + 26 log10(fc) for carrier
frequency fc = 2.5GHz, and antenna gain of 17 dBi. The
shadowing factor is given by a log-normal function with a
standard deviation of 8dB (as in [25]) updated every second,
and fast fading follows a Rayleigh distribution dependent
of the user speed and the angle of incidence (as in [31]).
Achievable rates are then computed with the Shannon formula,
BW log2(1 + SINRub), for the the average SINRub given by
pathloss and shadowing [24] and a channel bandwidth of
BW = 10MHz [24]. Finally, the modulation-coding scheme is
selected according to the SINRub thresholds reported in [32].
Unless otherwise stated, users move according to the Random
Waypoint Model (RWP), network size |B| is 57 sectors, all
operators have the same share, the number of users of the
operator o is proportional to so, i.e., |Uo| = |U| · so, and
confidence intervals are below 1%.

A. Utility gains

We start by evaluating the gains in terms of the overall
network utility. We consider a scenario with a user density of
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10 users/sector and 3 operators, and plot W (x, f) as a function
of the network size |B|. In this setting, we compare the per-
formance of our algorithm for dynamic sharing, Greedy Local
Largest Gain (‘GLLG’), against the following approaches:

i) SINR-based Static Slicing (‘SINR SS’): the resources of
each sector are statically divided among operators and
users associate with the based station with highest SINR;

ii) Distributed Greedy Static Slicing (‘DG SS’): resources
are also sliced statically and user associations follow the
Distributed Greedy algorithm discussed in Section III-B2;

iii) Distributed Greedy (‘DG’): this is the algorithm for
dynamic sharing presented in Section III-B2;

iv) Centralized (‘Centralized’): this is the centralized algo-
rithm proposed in [9].

The results are exhibited in Fig. 2. We draw the following
conclusions: (i) significant gains result from both improving
user association (DG SS vs. SINR SS) and sharing resources
dynamically (DG vs. DG SS); (ii) the Distributed Greedy
approach of Section III-B2 performs almost at the same level
of the baseline approach of [9] (DG vs. Centralized); and
(iii) the proposed approach performs closely to these two
approaches, although it pays a small price for reducing the
handoff overheads (GLLG vs. DG). Note that the purpose
of this results is to benchmark different approaches and the
descend trend exhibited in Fig. 2 is caused only by the
evaluation in different sized networks.

In addition to the overall network gain, it is also interesting
to look at the gains of the individual operators. Theorem
3 showed that the difference in an operator’s utility under
MORA and SS exceeds − log(e), but in fact we expect it
to be positive. Fig. 3 shows the probability density function
for the sampled difference of operators utility under MORA
and SS over multiple simulation runs, for different numbers of
operators |O| and user densities |U|/|B|. As can be seen it is
indeed positive, which confirms that MORA effectively pro-
tects all operators ensuring gains to all of them. As expected,
such gains are higher for scenarios with more operators and
lower loads.
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B. Capacity savings

We next evaluate the benefits of our approach to operators
based on the capacity savings they would achieve. Specifi-
cally, consider a network operated under our algorithm for
dynamic sharing, where the capacity (i.e., total amount of
resource) of each base station is given by CGLLG, and let
Cbaseline be the base stations’ capacity required to achieve
the same network utility under two baselines: (a) static slic-
ing with SINR-based user association, and (b) static slicing
with enhanced user association (i.e., using our algorithm for
user association). These two baselines allow us to study
the potential gains earned due to a smarter user association
and the gains achieved by dynamic resource sharing. Fig. 4
illustrates the corresponding capacity savings, computed as
∆ = (Cbaseline − CGLLG)/CGLLG, for different numbers of
operators, |O| ∈ {2, . . . , 6}, and three different user densities,
|U|/|B| = 5 (low density), |U|/|B| = 10 (medium) and
|U|/|B| = 15 (high). The results show that substantial gains
can be realized.

The above results show that gains increase with the number
of operators and decrease with per-sector user load. This can
be expected intuitively since when the user distribution is
denser, the amount of users per station, tend to equalize. By the
contrary, with light loads, MORA dynamic resource allocation
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exploit statistical multiplexing in the network, leading to
higher gains.

As a consequence of regarding the results from a different
angle, results show that in an scenario with operators with
different shares, the operators with smaller shares are more
benefited from MORA, as suggested in Section II-D3. In order
to gain additional insight into the impact of these factors, Fig. 5
displays the influence of the share of the operator (so) and the
average load per base station sector |U|/|B| in the percent of
extra capacity required to achieve the same utility (∆) with the
static slicing with enhanced user association baseline. Results
are also compared with the analytical result of Section II-D3,
confirming that the theoretical analysis result holds in real
conditions.

C. User performance

To illustrate the gains from a user perspective, we compare
the per-user throughput achieved by our approach against the
two baselines: static slicing with SINR-based user association
(‘Baseline 1’), and static slicing with enhanced user associ-
ation (‘Baseline 2’). The resulting box-and-whisker plots are
shown in Fig. 6 for different user densities and numbers of
operators. We observe that our approach provides substantial
gains both in terms of the median values as well as the
various percentiles. Furthermore, similarly to the above, gains
increase with the number of operators but decrease with per-
sector user load. To complement the previous results, we
compare the file download times achieved by our approach
against a baseline scenario (static slicing with enhanced user
association), when base stations have the same capacity in both
cases and users are constantly downloading files. Let us define
the file download time gain as GD = (DSS −DGLLG)/DSS ,
where DSS is the average file download time with the static
slicing approach and DGLLG with ours. The gains achieved
are shown in Fig. 7 as a function of the file download size, for
different user densities and numbers of operators. We observe
the gains are substantial, and fairly independent of the file size.

D. Computational complexity

As mentioned in Section III-A, one of the key advantages of
the proposed approach over the state-of-the-art is its reduced
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computational complexity. To quantify this, we have measured
the time required to execute the following algorithms in a
dual-core 2.8GHz processor: (i) our algorithm for dynamic
sharing (‘GLLG’); (ii) the Distributed Greedy approach of
Section III-B2, which has unconstrained overhead (‘DG’); (iii)
the centralized algorithm of [9] (‘Centralized’); and (iv) the
non-linear solver used by [23] (‘Non-linear Solver’). Fig. 8
shows the resulting execution times (in seconds) as a function
of the number of users for a fixed network size |B| = 57 and
|O| = 4 operators. The results confirm that the algorithms of
[23] and [9] are impractical, especially if we take into account
that they have to be triggered every time the channel quality
of a user changes. By contrast, the execution time of our
Distributed Greedy algorithm remains very low, and it remains
even lower for our GLLG approach (due to the constraint that
GLLG imposes on the number of handovers).

E. Impact of non-uniform load distributions

All the results shown so far have been based on the
RWP mobility model, which is known to distribute load
uniformly across space. To understand the impact of non-
uniform load distributions, we have evaluated the capacity
savings over a baseline (static slicing with enhanced user
association) under the SLAW model [33], which is a non-
uniform human walk mobility model. To show different levels
of non-uniformity, we have parameterized the SLAW model
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with five different configurations of increasing non-uniformity,
from C1 to C5, whose parameters {waypoints, clustering
range, alpha distance, inverse self-similarity} have been set
as follows: C1 = {100, 20, 5, 0.95}, C2 = {85, 40, 4.5, 0.85},
C3 = {75, 60, 4, 0.75}, C4 = {65, 80, 3.5, 0.65} and C5 =
{50, 100, 3, 0.55}. The results, given in Fig. 9, show that (as
expected) capacity savings decrease if loads are non-uniform
since multiplexing gains are reduced when users concentrate
around some areas. However, the decrease is very gradual,
which shows that non-uniformity has a limited impact on the
resulting gains.

It is worth noting that the above experiment assumed that all
operators follow the same mobility pattern, by using the same
instance of the SLAW model to generate the users hotspots; if
different patterns are assumed for different operators (which
may be the case for instance if we consider services of
different nature) by using different instances of the SLAW
model to generate the users hotspots, then gains increase
(rather than decrease) with non-uniformity, as each operator
may have its users concentrated in different hotspots, thereby
maximizing the benefit from resource sharing. This is shown
by the results given in Fig. 10.
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V. CONCLUSIONS

In this paper we have addressed the problem of multi-tenant
RAN resource slicing. While there has been substantial work
towards addressing this problem, most has focused on architec-
tural issues, leaving algorithmic aspects open to consideration.
The design of algorithms for dynamic resource sharing across
slices is challenging as it involves user association decisions
(which is a difficult problem in itself) as well as multi-operator
sharing policies. Our main contribution has been to show
that, despite its complexity, it is possible to design practical
solutions that scale to large networks and can track network
load dynamics. Indeed, our analytical results provide strong
evidence that the resulting allocations are near-optimal, and
our simulations confirm robust benefits to operators (in terms
of capacity savings) as well as to users (in terms of improved
performance).
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APPENDIX

Proof of Theorem 1: Let (x∗, f∗) = (xMORA, fMORA)
be a (possibly not unique) optimal solution to MORA. Since
(x∗, f∗) is optimal, we have :

W (x∗, f∗)−W (x′, fM (x′)) =∑
p∈O Up(x∗, f∗)− Up(x′, fM (x′)) ≥ 0

Thus,
∑

p∈O\{o}
Up(x∗, f∗)− Up(x′, fM (x′)) ≥

Uo(x′, fM (x′))− Uo(x∗, f∗) = −∆Uo.

Now let U∗o,b denote the set of users of operator o connected
to base station b under user association x∗, and U ′o,b the same
for user association x′. Furthermore, let ωu = 1/|Uo| for u ∈
Uo, ω∗ob = |U∗o,b|/|Uo| and ω′ob = |U ′o,b|/|Uo|. Note that for
p 6= o, U∗p,b = U ′p,b and ω∗p,b = ω′p,b. Then,

∑

p∈O\{o}
Up(x∗, f∗)− Up(x′, fM (x′)) =

=
∑

p∈O\{o}

∑

b∈B

( ∑

u∈U∗p,b

ωu log
( cubωu∑

q∈O ω
∗
qb

)
−

∑

u∈U ′p,b

ωu log
( cubωu∑

q∈O ω
′
qb

))

=
∑

b∈B

∑

p∈O\{o}

∑

u∈U∗p,b

ωu log
( cubωu∑

q∈O ω
∗
qb

)
− (9)

ωu log
( cubωu∑

q∈O ω
′
qb

)

=
∑

b∈B

( ∑

p∈O\{o}

∑

u∈U∗p,b

ωu

)
log
(∑

q∈O ω
′
qb∑

q∈O ω
∗
qb

)
(10)

=
∑

b∈B

( ∑

p∈O\{o}
ω∗p,b

)
log
(∑

q∈O\{o} ω
′
qb + ω′ob∑

q∈O\{o} ω
∗
qb + ω∗ob

)

≤
∑

b∈B

( ∑

p∈O\{o}
ω∗p,b

)
log
(∑

q∈O\{o} ω
′
qb + ω′ob∑

q∈O\{o} ω
∗
qb

)

=
∑

b∈B
ω′ob log




∑
q∈O\{o} ω

∗
qb

ω′ob
+ 1

∑
q∈O\{o} ω

∗
qb

ω′ob




∑
q∈O\{o} ω∗qb

ω′
ob

≤
∑

b∈B
ω′ob log e = log e (11)

Note that (9) holds since U∗p,b = U ′p,b for p 6= o, (10) is
obtained by using properties of the logarithm, and inequality
(11) holds since ((x+ 1)/x)x < e for x ≥ 0.

Proof of Theorem 2: For a given user association x the
utility of operator o under SS is maximized when the resource
blocks of each operator at each base station are equally
distributed among the operator’s users. This yields

Uo(x, fS(x)) =

=
∑

b∈B

∑

u∈Uo

1

|Uo|
xub log

(
1∑

b∈B
∑

v∈Uo xvb

so∑
o′∈O so′

cub

)
,

=
1

so

∑

b∈B

∑

u∈Uo
wuxub log

(
1∑

b∈B
∑

v∈Uo xvb

so∑
o′∈O so′

cub

)
,

where the weights are wu = so
|Uo| , u ∈ Uo.

If we multiply the numerator and denominator inside the
log() by wu, and take into account that wu = wv for u, v ∈ Uo
and

∑
o′∈O so′ = 1, the above can be rewritten as

Uo(x, fS(x)) =
1

so

∑

b∈B

∑

u∈Uo
wuxub log(wucub)−
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1

so

∑

b∈B

∑

u∈Uo
wuxub log

(∑
b∈B

∑
v∈Uo wvxvb

so

)
.

The utility of operator o with MORA allocation is given by

Uo(x, fM (x)) =
1

so

∑

b∈B

∑

u∈Uo
wuxub log

(
wucub∑

v∈U wvxvb

)
,

which can be rewritten as

Uo(x, fM (x)) =
1

so

∑

b∈B

∑

u∈Uo
wuxub log(wucub)−

1

so

∑

b∈B

∑

u∈Uo
wuxub log

(∑

v∈U
wvxvb

)
.

From the above, if we can show that

∑

b∈B

∑

u∈Uo
wuxub log

(∑
b∈B

∑
v∈Uo wvxvb

so

)
≥

∑

b∈B

∑

u∈Uo
wuxub log

(∑

v∈U
wvxvb

)
,

(12)

the theorem is proved.
To show the above, we consider the maximization of

function
∑

b∈B yb log(xb) over xb subject to
∑

b∈B xb = 1.
By applying Lagrange multipliers, it can be easily seen that
this function is maximized for xb = yb/

∑
b′∈B yb′ . Since

both the left and right-hand sides of (12) conform to this
constrained optimization problem, and the left-hand side of
(12) corresponds to its optimal solution, the inequality of (12)
follows.

Proof of Theorem 3: Let (xMORA, fMORA) and (xS , fSS)
denote optimal allocations under MORA and SS. Suppose we
choose x′ as a user association where x′u = xSS

u for u ∈ Uo
and x′u = xMORA

u otherwise. Then by Theorem 1 we have
that

Uo(xMORA, fMORA)− Uo(x′, fM (x′)) ≥ − log(e).

Furthermore, from Theorem 2 we have

Uo(x′, fM (x′)) ≥ Uo(x′, fS(x′)).

Combining the above two equations we get

Uo(xMORA, fMORA)− Uo(x′, fS(x′)) ≥ − log(e),

Note that under SS the utility of an operator is independent
of the user associations of the other operators, thus given our
choice of x′ we have that

Uo(x′, fS(x′)) = Uo(xSS , fSS)

which combined with the above gives

Uo(xMORA, fMORA)− Uo(xSS , fSS) ≥ − log(e)

which proves the theorem.

Proof of Theorem 4: The reduction is via the 3-dimensional
matching problem which is known to be NP-complete. Re-
call that the 3-dimensional matching problem is stated as
follows. Let us consider disjoint sets C = {c1, . . . , cn},
D = {d1, . . . , dn} and E = {e1, . . . , en}, and a family T =
{T1, . . . , Tm} of triples with |Ti∩C| = |Ti∩D| = |Ti∩E| = 1
for i = 1, . . . ,m, with m ≥ n. The question is whether T
contains a matching, i.e., a subfamily T ′ for which |T ′| = n
and ∪Ti∈T ′Ti = C ∪D ∪ E.

Our reduction is along the lines of [?]. We call the triples
that contain cj triples of type j. Let tj be the number of triples
of type j for j = 1, . . . , n. Base station i corresponds to the
triples Ti for i = 1, . . . ,m. We create two types of users,
element users and dummy users. We have 2n element users,
u ∈ {1, . . . , 2n}, corresponding to the 2n elements of D∪E.
There are tj − 1 dummy users of type j for j = 1, . . . , n.
Note that the total number of dummy users is m − n, u ∈
{2n+ 1, . . . ,m+ n}. Element users can connect to the base
stations that correspond to a triple that contains this element,
with a transmission rate of R. Dummy users of type j can
connect (also with a transmission of R) to the base stations that
correspond to triples of type j. Element users have a weight
wu = 1/(2m) and dummy users have a weight wu = 1/m.5

We claim that a matching exists if and only if the network
utility with the MORA criterion is W = (n/m) log(R/2) +
((m− n)/m) log(R).

Proof of Theorem 5: We prove the theorem by means of
the following example. Let us consider a scenario with |B|
base stations in which |B|2 users join the network. All users
have the same weight and can associate with any of the |B|
base stations with cub = 1. Independently of the criterion
followed to associate new users, after all users have joined
there must be a base station with at least |B| users. Now,
suppose all users but these |B| leave the network. For this
scenario, the network utility provided by the online algorithm
is W (x′, f ′) =

∑|U|
i=1

1
|B| log( 1

|B| ) = − log(|B|). The optimal
solution is that each user associates with a different base sta-
tion, which yields W (xMORA, fMORA) = log(1). Thus, we
have W (xMORA, fMORA) −W (x′, f ′) = log(1) + log(|B|),
which grows to ∞ as |B| → ∞.

Proof of Theorem 6: Since in an equilibrium of the Dis-
tributed Greedy algorithm, each user is associated with the
base station that maximizes ru, the following holds for all u:

∑

b∈B
x′ubwu log

(
wucub∑

v∈U x
′
vbwv

)
≥

∑

b∈B
x∗ubwu log

(
wucub∑

v∈U x
′
vbwv + wu

)
(13)

where the base station for which x′ub = 1 is the one with
which user u is associated under Distributed Greedy, and the
base station for which x∗ub = 1 is the one with which it is
associated under the optimal allocation (i.e., x∗ = xMORA).

5These weights can be achieved by considering a scenario with two
operators, one with twice as many users as the other, in which those users that
are neither element nor dummy users can only connect to one base station
that is none of the BS i for i = 1, . . . ,m.
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At the base station for which x∗ub = 1 we have∑
v∈U x

∗
vbwv ≥ wu, so the following also holds:

∑

b∈B
x′ubwu log

(
wucub∑

v∈U x
′
vbwv

)
≥

∑

b∈B
x∗ubwu log

(
wucub∑

v∈U x
′
vbwv +

∑
v∈U x

∗
vbwv

)
.

Let us define the load at a base station as the sum of weights
of the users at the base station, lb =

∑
v∈U wvxvb. Then, the

above can be rewritten as
∑

b∈B
x′ubwu log

(
wucub
l′b

)
≥
∑

b∈B
x∗ubwu log

(
wucub
l′b + l∗b

)

where l′b and l∗b are the load at base station b with the
Distributed Greedy algorithm and the optimal allocation, re-
spectively.

From the above it follows that

wu log(ru(x∗, f∗))− wu log(ru(x′, f ′)) ≤
∑

b∈B
x∗ubwu log

(
wucua
l∗b

)
−
∑

b∈B
x∗ubwu log

(
wucua
l′b + l∗b

)

where f∗ = fM (f∗). The above can be expressed as

wu log(ru(x∗, f∗))− wu log(ru(x′, f ′)) ≤

−
∑

b∈B
x∗ubwu log

(
l∗b

l′b + l∗b

)

Summing the above over all users yields

W (x∗, f∗)−W (x′, f ′) ≤ −
∑

u∈U

∑

b∈B
x∗ubwu log

(
l∗b

l′b + l∗b

)

From the above,

W (x∗, f∗)−W (x′, f ′) ≤ −
∑

b∈B
log

(
l∗b

l′b + l∗b

)∑
u∈U x∗ubwu

=

−
∑

b∈B

∑

u∈U
x′ubwu log

(
l∗b/l

′
b

1 + l∗b/l
′
b

)∑
v∈U x∗vbwv∑
v∈U x′

vb
wv

=

−
∑

b∈B

∑

u∈U
x′ubwu log

(
l∗b/l

′
b

1 + l∗b/l
′
b

)l∗b/l
′
b

Given that (x/(1 + x))x > 1/e for x ≥ 0, we obtain the
following bound:

W (x∗, f∗)−W (x′, f ′) ≤
∑

b∈B

∑

u∈U
x′ubwu log(e) = log(e)

Since x∗ = xMORA and f∗ = fMORA, this proves the
theorem.

Proof of Theorem 7: The proof of the theorem is based on
the following steps:
Step 1: we first show that while there is some user for which
rnewu ≥ e · roldu , W (xi, f i) increases at each iteration until we
converge to a region that satisfies rnewu ≤ e · roldu for all u.
Step 2: we then show that if rnewu ≤ e · roldu ∀u, it follows
that W (xi, f i) ≥W (xMORA,xMORA)− 2 log(e).
Step 3: we further prove that if a subsequent iteration i

yields rnewu ≥ e · roldu for some user u, then it must be that
W (xi, f i) ≥W (xMORA,xMORA)− (2 + maxu wu) log(e).
Step 4: finally, we prove that after an iteration such as the
above, in the subsequent iterations W (xi, f i) increases, until
we converge once again to a region where rnewu ≤ e · roldu ∀u.

We next prove each of the above steps.

Step 1: While there is some user for which rnewu ≥ e · roldu ,
W (xi, f i) increases at each iteration until we converge to a
region that satisfies rnewu ≤ e · roldu for all u.

To prove the above, we consider a variation of the Greedy
Largest Gain in which a user only moves to a new location
if rnewu ≥ e · roldu , and show that this algorithm is guaranteed
to converge. To show this, we prove that the network utility
function W (x, f) is a generalized ordinal potential for the
algorithm variation. Consider the ith iteration in the algorithm
corresponding to a reassociation of user u, and let (xi−1, f i−1)
denote the configuration before this iteration and (xi, f i)
the configuration after the iteration. By construction of the
algorithm, the following is satisfied:

ru(xi, f i) ≥ e · ru(xi−1, f i−1)

Let b be the new base station user u associates with, and a
her previous base station. Then,

W (xi, f i)−W (xi−1, f i−1) =

∑

v∈U
xivawv log

(∑
y∈U x

i
yawy + wu∑

y∈U x
i
yawy

)
+

∑

v∈U\{u}
xivbwv log

( ∑
y∈U\{u} x

i
ybwy∑

y∈U\{u} x
i
ybwy + wu

)
+

wu log(ru(xi, f i))− wu log(ru(xi−1, f i−1)) =

lia log

(
lia + wu

lia

)
+ li−1b log

(
li−1b

li−1b + wu

)
+

wu log(ru(xi, f i))− wu log(ru(xi−1, f i−1))

Since lia log
(

lia+wu

lia

)
≥ 0, we have

W (xi, f i)−W (xi−1, f i−1) ≥

wu log

(
li−1b /wu

1 + li−1b /wu

) l
i−1
b
wu

+ wu log

(
ru(xi, f i)

ru(xi−1, f i−1)

)

> wu log(1/e) + wu log(e) = 0 (14)

so that W (x, f) is a generalized ordinal potential. This im-
plies that the potential game corresponding to the algorithm
variation has the finite improvement property; therefore, the
algorithm variation converges in a finite number of iterations
to a solution that satisfies rnewu ≤ e · roldu ∀u. Also, from (14)
it follows that W (xi, f i) > W (xi−1, f i−1), i.e., the network
utility increases at each iteration.

As the Greedy Largest Gain algorithm always selects the
user with the largest rnewu /roldu , it will select a user for which
rnewu ≥ e · roldu , as long as there is one that satisfies this con-
dition, and hence will follow the same steps as the algorithm
variation that we have considered above. This implies that
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there will be some iteration i in which the Greedy Largest
Gain algorithm will reach a solution (xi, f i) that satisfies
rnewu ≤ e · roldu ∀u and, until reaching this solution, W (xi, f i)
will increase at each iteration.

Step 2: If rnewu ≤ e · roldu ∀u, it follows that W (xi, f i) ≥
W (xMORA,xMORA)− 2 log(e).

Let (xi, f i) be the solution at the ith iteration which satisfies
rnewu ≤ e · roldu ∀u. Equation (13) for this solution can be
rewritten as
∑

b∈B
xiubwu log

(
wucub∑

v∈U x
i
vbwv

)
≥

∑

b∈B
xMORA
ub wu log

(
wucub∑

v∈U x
i
vbwv + wu

)
− wulog(e)

Starting from the above equation and applying the same
reasoning as in the proof of Theorem 6 yields W (xi, f i) ≥
W (xMORA, fMORA)− 2 log(e).

Step 3: If a subsequent iteration i yields rnewu ≥ e ·
roldu for some user u, then it must be that W (xi, f i) ≥
W (xMORA,xMORA)− (2 + maxu wu) log(e).

Let us that for some iteration i of the algorithm such that
it holds rnewu ≤ e · roldu ∀u for the solution before this
iteration, and rnewu ≤ e · roldu , for some u, for the solution
after the iteration. Let (xi−1, f i−1) be the solution before
iteration i and (xi, f i) the solution after the iteration. As we
have seen above, for the former it holds W (xi−1, f i−1) ≥
W (xMORA, fMORA) − 2 log(e). Let us consider that at iter-
ation i user u moves to base station b. Then,

W (xi, f i)−W (xi−1, f i−1) ≥
∑

v∈U
xi−1vb wv log

( ∑
t∈U x

i−1
tb wt∑

t∈U x
i−1
tb wt + wu

)
=

wu log

( ∑
t∈U x

i−1
tb wt/wu

1 +
∑

t∈U x
i−1
tb wt/wu

)∑
t∈U x

i−1
tb

wt
wu

≥

− wulog(e) ≥ −max
u

wulog(e)

Thus,

W (xi, f i) ≥W (xMORA, fMORA)− (2 + max
u

wu) log(e).

Step 4: After an iteration such as the above, in the subse-
quent iterations W (xi, f i) increases, until we converge once
again to a region where rnewu ≤ e · roldu ∀u.

Let us consider that before iteration i there is some u for
which rnewu ≥ e · roldu . Then,

W (xi, f i)−W (xi−1, f i−1) ≥ wu log(rnew)− wu log(rold)+

∑

v∈U
xi−1vb wv log

( ∑
t∈U x

i−1
tb wt∑

t∈U x
i−1
tb wt + wu

)
>

wu log(e)− wu log(e) ≥ 0

Therefore, if at some iteration we get rnewu ≥ e · roldu

for some u, then for that iteration it will hold W (xi, f i) ≥
W (xMORA, fMORA)− (2 + maxu wu) log(e), and from this
point on W (xi, f i) is going to increase until we reach
W (xi, f i) ≥W (xMORA, fMORA)− 2 log(e) again.


