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Abstract—Troubleshooting millimeter-wave (mm-wave) wire-
less networks is complex due to the directionality of the communi-
cation. Issues such as deafness, misaligned antennas, or blockage
may severely impact network performance, and identifying them
is crucial to improve network deployments. To this end, access
to lower-layer information is important. However, commercial
off-the-shelf mm-wave wireless devices typically do not provide
such information. Even if they would, detecting effects such as
deafness based on information of a single node that forms part
of the network is typically hard. In this paper, we present the
design and evaluation of an external sniffing device that can infer
the aforementioned performance issues only using narrowband
physical layer energy traces. Our sniffer does not need to decode
any data, resulting in a simple but effective approach which also
preserves privacy and works on encrypted networks. Our key
contribution is a machine learning framework which enables
automated energy trace analysis while coping with the non-
stationarity of the traces. We evaluate its performance in practice
using off-the-shelf wireless devices operating in the 60 GHz band.
Our results show that the above framework correctly infers
physical layer events in virtually all cases, thus providing valuable
information to troubleshoot issues in mm-wave networks.

I. INTRODUCTION

The directional nature of millimeter-wave (mm-wave) com-
munications results in issues that strongly impact higher layers
but which are hard to identify without detailed information
of the underlying physical layer effects. This includes, for
instance, deafness [1], misaligned antennas, and link blockage.
Unfortunately, Commercial Off-The-Shelf (COTS) devices are
typically a black box regarding such physical layer infor-
mation. As a result, troubleshooting COTS-based, real-world
mm-wave network deployments often translates into time-
consuming “trial-and-error” analysis. While understanding
performance issues in such deployments is challenging [2]–
[4], the resulting knowledge is extremely valuable. It provides
useful insights for network planners and administrators, such
as giving advice on whether an Access Point (AP) should be
relocated to prevent harmful reflections. Moreover, this knowl-
edge helps researchers to understand and improve protocol de-
sign, analyze performance of new mechanisms, and investigate
standard compliance of mm-wave devices. However, gaining
such insights from a COTS node that forms part of the network
is virtually impossible. On top of the aforementioned lack of
lower-layer access, a single node would be restricted to its
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Fig. 1. Energy trace example of a data burst starting with a pair of beacons.

particular point of view—the directivity of the communication
limits the insights that we could gain. To prevent this, we
need to capture and compare the behavior of the network from
multiple points of view. Given the extreme bandwidth available
in mm-wave communications (e.g., 2 GHz per channel in the
60 GHz band), this requires an inordinate amount of data
processing, and thus would be highly challenging.

In this paper, we design and evaluate an automated mm-
wave network diagnosis tool based on COTS hardware that
overcomes the above limitations. Specifically, the tool uses
machine learning techniques to infer performance bottlenecks
in 60 GHz networks using narrowband physical layer en-
ergy traces from one or more sniffers. That is, we do not
record and decode the full communication but only require
the energy level that the sniffers receive. While sniffers are
directional, by combining the traces of multiple sniffers we
can obtain the full picture of network activity. The result
is an energy trace as shown in Fig. 1. This trace depicts
the start of a typical data burst in IEEE 802.11ad. The data
burst starts with a pair of beacons which contain control
information. The pair of beacons is followed by a sequence
of data packets and acknowledgments. While not shown in
Fig. 1, occasional Beam Refinement (BR) sequences retrain
the antenna beams in case of, for instance, node movement,
to ensure that both nodes remain in the boresight of each
other. By means of simple visual inspection, it is easy to
identify the individual frame types in the trace. This enables
us to infer the dynamics of the communication. For instance, a
missing acknowledgment after a data packet hints at a deafness
issue, overlapping packet frames suggest a collision, and so on.
While this is visually evident, manually inspecting the energy
traces is clearly infeasible given the number of packets when978-1-5386-2723-5/17/$31.00 c©2017 IEEE



communicating at multi-gigabit-per-second rates. At the same
time, finding such events in an automated manner is hard. Our
key contribution is developing a machine learning framework
that is able to correctly classify the above frame types and
infer network issues. This is far from trivial due to (a) the non-
stationarity of the traces and (b) the complexity of the IEEE
802.11ad protocol [5]. To address (a), we dynamically update
the parameters of the underlying machine learning model such
that it adjusts to variations in the received energy level due to,
e.g., node movement. Regarding (b), we use a combination of
template matching and an Explicit Duration Hidden Markov
Model (EDHMM) to correctly classify frames.

The core idea of our approach is also applicable to networks
operating at lower frequencies such as IEEE 802.11ac. Still,
in this paper we focus on the mm-wave case, which is more
challenging due to the use of directional antennas and the large
bandwidth. Since we do not need to decode any of the data,
our approach preserves privacy, works regardless of whether
the network uses encryption, and does not require accurate
time/frequency synchronization. As a result, our technique is
simple yet highly effective. Our contributions are as follows:
• We design a machine learning framework based on tem-

plate matching and an EDHMM to diagnose physical
layer issues in 60 GHz networks. The main challenge
lies in the variability of the traces and the complexity
of identifying the structural elements in the traces given
their noisiness, aperiodicity, and unpredictable behavior.
Standard machine learning approaches fail in such a
scenario. The key to solve this issue is the aforementioned
complex combination of machine learning techniques.

• We introduce a time-adaptive learning mechanism to cope
with the non-stationarity of energy traces due to gain
control adjustments and node movement. This run-time
adaptation is barely explored in specialized work in the
field of statistics but is critical for the success of our
approach. It sets our work apart from existing work based
on simple clustering or thresholding which is highly
sensitive to non-stationary behavior and thus often fails.

• We evaluate our approach in an extensive measurement
campaign using COTS 60 GHz hardware to analyze its
performance in a range of practical scenarios.

The remainder of this paper is structured as follows. In
Section II we survey related work, and in Section III we
provide some preliminaries of our EDHMM. We then give an
overview of our machine learning framework in Section IV,
and delve into its details in Sections V and VI. In Section VII
we introduce the aforementioned time-adaptive learning mech-
anism. After that, we present and discuss our evaluation results
in Section VIII, and conclude the paper in Section IX.

II. RELATED WORK

In the following, we give an overview of performance analy-
sis and troubleshooting in mm-wave networking. As sketched
in Section I, mm-wave networks suffer from high path-loss
and high absorption. To overcome this, nodes typically use
directional antennas and Line-Of-Sight (LOS) paths. However,

this makes links very susceptible to blockage. State-of-the-
art work in this field [6]–[8] focuses on correctly identifying
such blockage at the nodes involved in the communication,
and reacting in a timely manner. For instance, BeamSpy [7]
measures the set of available paths between a transmitter and a
receiver. This “path skeleton” serves as a reference whenever
blockage occurs—the nodes compute which of the paths in
the skeleton is most likely to be unaffected by the blockage
and steer their antennas accordingly. As a result, BeamSpy can
avoid costly beam steering overhead. Further, earlier work by
the same authors [8] looks into differentiating device move-
ment from blockage based on Received Signal Strength (RSS)
measurements. This is key to ensure that nodes react correctly
when links degrade. Similarly, MOCA [6] transmits a very
short control message to assess the link state. If the transmitter
does not obtain a reply, it assumes that the antennas are
misaligned. Otherwise, it adapts the Modulation and Coding
Scheme (MCS) according to the current channel state. All of
the above approaches aim at improving the performance of
mm-wave networks. In contrast, our work troubleshoots the
operation of such approaches and is thus orthogonal to them.
While BeamSpy and MOCA also try to identify specific issues
in the communication, they are constrained to the specific
“viewpoint” of a certain node. Our framework runs on one
or more external sniffers which we can place at multiple
locations, thus providing much richer insights. Moreover, the
sniffers are only needed while troubleshooting the network but
not during regular operation.

Earlier work proposes an equivalent concept based on
external sniffers. However, such approaches typically consider
lower frequency bands, and focus on security issues [9], [10]
such as realizing an Intrusion Detection System (IDS). The
key difference to our approach is that such security sniffers
are designed to continuously operate along with the network,
thus increasing the complexity of the deployment. In contrast,
our tool does not need to be part of the network, and can
be used on-demand only. Hence, we do not add complexity
to the network. Moreover, we focus on performance issues
in directional wireless networks while the above work deals
with security in the omni-directional case. However, [10] and
references therein also deal with raw physical layer data,
similarly to our case. Specifically, they suggest overhearing
the communication and jamming unwanted packets based on,
for instance, header information. Our tool also overhears the
communication but does not need to decode any preambles
and headers to identify the start and source of the packets,
respectively. Instead, we use machine learning on the timing of
frames to obtain the information required for network analysis.
Our tool is the first automatic classifier of IEEE 802.11ad
energy traces for network diagnosis. The uniqueness of our
approach prevents direct comparison with earlier work.

While machine learning is a common approach for traffic
classification, related work typically uses it after demodulating
and decoding frames at the physical layer [11], [12]. In con-
trast, our tool uses machine learning on the raw physical layer
trace. Thus, it eliminates the need for the above operations,



which are particularly complex and resource intensive in mm-
wave networks. However, this poses additional challenges such
as identifying frames and discerning which node transmits
which frame. In this paper, we provide solutions to these
challenges. This contribution sets us apart from existing work.

III. EDHMM PRELIMINARIES

We use uppercase and calligraphic fonts for sets, except for
N (X;µ, σ2), which refers to a Gaussian random variable X
with mean µ and variance σ2. We denote a random sequence of
length T by X1:T = (X1, . . . , XT ), where the random variable
Xt at time index t ∈ {1, . . . , T} takes values in the set X , with
cardinality |X |. Realizations are indicated by lowercase letters,
i.e., xt is the realization of Xt, and with x1:T = (x1, . . . , xT )
we denote a sequence of realizations. Vectors are indicated
by bold letters, e.g., bbb, and we refer to their elements as bbb =
[b1, . . . , bK ], with |bbb| = K. For matrices we use uppercase
bold letters, e.g., AAA = {aij} is a matrix with elements aij .

Markov models, whose states correspond to observable
events, are inadequate to solve our mm-wave channel estima-
tion problem. The reason is that we measure a noisy version of
the real state (i.e., the current energy level), as the transmitted
energy levels are corrupted by random channel fluctuations.
Instead, HMMs [13] are a more appropriate tool, as their
observations are probabilistic functions of the (hidden) state.
Specifically, a HMM is composed of embedded stochastic
processes, where an unobservable hidden random process
is revealed to the observer through another set of random
processes that produce the sequence of observations. We now
consider a data burst and aim to solve the following estimation
problem. The observed channel samples in the data burst,
O1:T = (O1, . . . , OT ), are modeled as a sequence of real-
valued random variables corresponding to one of the following
basic elements: “1” inter-frame space (IFS), “2” data packet
(DATA) and “3” acknowledgement (ACK). Accordingly, the
hidden state St at time t is a discrete random variable that
can take values in the set S = {1, 2, 3}. We define S1:T =
(S1, . . . , ST ) as the sequence of random variables describing
the hidden states in the data burst, i.e., t ∈ {1, . . . , T}. Our ob-
jective is then to reliably estimate the sequence of hidden states
s1:T = (s1, . . . , sT ) from observations o1:T = (o1, . . . , oT ).
The standard HMM makes two basic assumptions regarding
the embedded stochastic processes:
A1) The first assumption is that S1:T is a first-order Markov

chain, i.e., P (St+1|S1, . . . , St) = P (St+1|St). In par-
ticular, we have P (St+1 = j|St = i) = aij , where
AAA = {aij}, i, j ∈ S, is the single-step transition
probability matrix of the HMM.

A2) The second assumption is that the random variable Ot is
statistically independent of (O1, . . . , Ot−1).

Moreover, Ot is a probabilistic function of the hidden state
St, i.e., it obeys a suitable conditional probability P (Ot|St)
and each random variable Ot can use a private distribution
P (Ot|St) over the hidden state. We use a Gaussian observation
model with P (Ot|St = i) = N (Ot;µi, σ

2
i ), where µi and σ2

i

specify the mean and the variance of the random variable Ot,

given that the hidden state is i ∈ S . This is known to well
approximate the noise distribution for mm-wave channels [14].
For all hidden states i ∈ S , we collect the parameter pairs
bi = (µi, σ

2
i ) through vector bbb = [b1, . . . , b|S|]. We define

πππ = [π1, . . . , π|S|], where πi is the probability that the HMM
is in state i ∈ S in the first time slot of the burst.

The HMM model is described through a further parameter
vector Θ = [πππ,AAA,bbb]. Its maximum likelihood estimate given a
sequence of observations is obtained through the Expectation-
Maximization (EM) algorithm [15], which entails two-step
iterations. First, initial values for Θ are chosen, and using
assumptions A1 and A2 the posterior distribution for the whole
sequence P (S1:T |O1:T ,Θ) is computed. Hence, this posterior
is used to compute the expected log-likelihood (which is also
known as the Baum’s auxiliary function) as

Q(Θnew,Θ) =
∑

S1:T∈ST

P (S1:T |O1:T ,Θ) logP (S1:T , O1:T |Θnew) .

(1)
Q(Θnew,Θ) is finally maximized with respect to Θnew,
obtaining a new estimate for the HMM model. This pro-
cess is repeated until convergence to a critical point. A
proper initialization of Θ (with particular regard for bbb) is
crucial for a proper convergence of the EM algorithm. For
a Gaussian-observation model, applying the two-step itera-
tions of the EM algorithm is equivalent to using the fol-
lowing Baum’s reestimation approach [16]. Consider two
new variables ξt(i, j) and γt(i), with i, j ∈ S, that
are defined as ξt(i, j) = P (St = i, St+1 = j|O1:T ,Θ) and
γt(i) =

∑|S|
j=1 ξt(i, j). We have:

πnew
i = γ1(i)

anewij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

µnew
i =

∑T
t=1 γt(i)ot∑T
t=1 γt(i)

σ2 new
i =

∑T
t=1 γt(i)(ot − µi)

2∑T
t=1 γt(i)

(2)

where ξt(i, j) and γt(i) are computed using the Forward-
Backward algorithm, see [17], [18].

However, standard HMMs are insufficient for our pur-
pose. In fact, the duration distribution for any hidden state
St = i ∈ S with self transition probability aii is the geometric
Probability Mass Function (PMF) g(d) = (aii)

d−1(1 − aii),
and we found it to be unsuitable to model the duration of
the states IFS, DATA and ACK. To address this, we consider
the EDHMM, where for each hidden state i ∈ S we have
aii = 0 and a state-specific distribution pi(d) is specified
over the discrete set Di = {dmin

i , . . . , dmax
i }, where dmin

i

and dmax
i are the minimum and maximum durations for the

protocol element transmitted when in state i. Hence, upon
entering state i ∈ S , the sequence of observations in that
state is i.i.d., of length d ∈ Di (sampled from pi(d)), and
is emitted from P (Ot|St = i) = N (Ot;µi, σ

2
i ). The duration

distributions are then collected into a further vector ppp, with
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ppp = [p1(·), . . . , p|S|(·)]. The EDHMM model is described
through the new parameter vector ΘEDHMM = [πππ,AAA,bbb,ppp].

IV. HIGH LEVEL DESCRIPTION OF THE MM-WAVE
CHANNEL ESTIMATION FRAMEWORK

The aim of the mm-wave channel analyzer that we present
in this paper is twofold. First, we want to track when data
bursts are transmitted and, for each, detect which packets are
exchanged, their duration, and average energy. This allows
obtaining statistics on their number, duration, whether there
are channel problems (which may be detected from missing
ACKs) and also allows tracking the channel quality (from
variations in the energy levels). As a second objective, we
track the transmission of control packets, which are sent for
link management purposes. These control packets appear in
two flavors as follows:
C1) The beacon pairs mark the beginning of a data burst.
C2) The BR sequences are utilized to manage the radio link.
Our approach consists of three steps.

Step 1 – Pre-processing (Fig. 2): beacon detection and data
burst extraction are implemented through the pre-processing
chain of Fig. 2, which operates on the raw channel trace,
through filtering, downsampling and template matching, see
Section V. We design the pre-processing chain for the case
of 802.11ad but we can easily adapt it to suit other protocols.
This pre-processing phase identifies all the beacons, classifies
their occurrences into C1 and C2 and outputs a collection of
N data bursts of the form {o(n)1:Tn

|n = 1, . . . , N}, which are
disjoint and contiguous channel subsequences.1

After Step 1, we delve into the semantic decoding of the
protocol elements that are transmitted within each data burst,
i.e., the elements in the above defined set S. To assess which
elements are transmitted, along with their average energy and
timing, we utilize an EDHMM model, which is first trained
(Fig. 3), and then used at runtime (Fig. 4) with non-stationary
traces. Let yyy = (y1, y2, . . . ) be a sequence of channel
samples. In general, yyy can be written as yyy = xxx + www, where
xxx = (x1, x2, . . . ) is the signal of interest at the receiver, that
is, after transmission, andwww = (w1, w2, . . . ) is the background
noise. From our experimental measurements, we know that
yyy is highly non-stationary across data bursts, i.e., there are
substantial variations in the energy associated with the signal
xxx and the noise www, which entail changes in µi and σ2

i , for
i ∈ S . Moreover, they can also be caused by power control

1A contiguous subsequence is made up of consecutive channel samples.

adjustments to compensate for channel attenuation and device
mobility. Nevertheless, the transmission time of the elements
in set S are channel and protocol-specific, as the transmission
time of data frames may be adapted by the protocol according
to the channel state. We proceed through the following steps.

Step 2 – EDHMM training (Fig. 3): we use stationary
channel traces for a preliminary and robust training of the
EDHMM parameters. Channel traces were picked so as to
encompass a wide range of data rates and MCSs, which de-
termine the different lengths of the physical layer data frames.
The distance between transmitter and receiver is kept fixed
and the surrounding environment (indoor for our experiments)
is kept as stable as possible (i.e., no user mobility, etc.).
From these stationary channels, the state-specific distributions
pi(d) for i ∈ S do not undergo major changes during each
trace and this allows their accurate estimation. Then, all the
trace-specific distributions are combined into an “average”
distribution considering a wide range of protocol settings, see
Section VI. Note that training is needed only once for a given
technology (e.g., 802.11ad).

Step 3 – Runtime trace analysis (Fig. 4): the EDHMM
parameters µi and σ2

i , for i ∈ S do depend on channel
attenuation and noise. Thus, these parameters are estimated
at runtime for each data burst using a clustering algorithm,
whereas the pi(d) are known from Step 2. The so obtained
EDHMM model is used to estimate the most likely sequence
in S (called the Viterbi path) from the samples in the current
data burst. This step is explained in Section VII.

Steps 2 and 3 rely on the further assumption that:
A3) Channel attenuation and noise are stationary within bursts.

V. PRE-PROCESSING

Data Acquisition, Filtering, and Downsampling: to obtain
the energy traces that we use as input for our machine
learning mechanism, we overhear the communication of
COTS 60 GHz devices using one or more external sniffers.
Each sniffer consists of a Sivers IMA FC1005V/00 V-Band
converter. The converter receives signals in the 60 GHz band
either via a directional (20◦) or omni-directional antenna
and outputs them at 2 GHz intermediate frequency (IF).
We capture the IF signal using a Universal Software Radio
Peripheral (USRP) X310 Software Defined Radio (SDR) at a
sample rate of 30 MHz. That is, we only need to capture a
fragment of the bandwidth of the signal to obtain an energy
trace which is suitable for our machine learning technique.
To obtain a second trace from a different angle, we connect
a second sniffer to the same USRP to ensure perfect timing
among traces. Since the coverage area of a mm-wave AP
is limited due to high path loss, sniffers are typically close
to each other and can thus be connected to the same USRP.
Moreover, if traces are recorded on different USRPs, we can
easily synchronize them in post-processing using a variant
of template matching. Fig. 5 shows our setup. The original
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Fig. 5. Practical sniffer setup for trace capture. The antennas at the sniffers
can be both directional or omni-directional, and sniffer location can be varied.

raw trace yyy is first filtered and then downsampled to a lower
rate for scaling purposes, so that each sample of the new
trace is computed as the mean of three subsequent samples
in the original raw trace. This new trace is then smoothed
using a fast and robust discretized spline filtering algorithm
for data of high dimension [19] [20], thus obtaining the trace ỹyy.

Template Matching Algorithm: after the data acquisition,
filtering, and downsampling, a collection of N data bursts of
the form {o(n)1:Tn

|n = 1, . . . , N} is extracted from the mm-wave
trace ỹyy. This requires a reliable identification technique for the
data bursts and, recalling that each data burst is preceded by a
pair of beacons, this corresponds to reliably detecting beacon
pairs. What we observe from the collected channel traces is
that the beacon duration and the inter-frame spacing between
them are almost constant within and across experiments.
Moreover, we note that the beacon shape is quite particular,
showing different energy levels at the beginning and at the end.
These characteristics make it possible to exploit a template
matching technique for the beacon detection. Here, we are
interested in finding C1) beacon pairs, and C2) BR sequences,
as these are key to understand the protocol behavior.

At the core of our template matching approach, we use the
Pearson’s correlation coefficient r ∈ [−1, 1] [21], which is
a statistical measure of the strength of a linear relationship
between two vectors uuu = [u1, . . . , uK ] and vvv = [v1, . . . , vK ]
(with mean µu and µv , respectively). It is defined as the ratio
of their covariance Cuv and the square root of the product of
their variances σ2

u and σ2
v , i.e., r = Cuv/(σuσv) is the sample

covariance given by:

Cuv =
1

K − 1

K∑
k=1

(uk − µu)(vk − µv) . (3)

The Pearson’s correlation coefficient is suitable to deal with
the non-stationarity of the traces, since it just evaluates some
internal relationship between the provided vectors. Moreover,
template matching is known to be the optimal detection
technique in the presence of white Gaussian noise [22], which
we found to be a good assumption for our mm-wave channel
traces [14]. Henceforth, for our template matching technique,
uuu corresponds to the average shape of a beacon frame (i.e.,
the template with a length of K samples), which the system
can easily obtain from channel idle times. During those idle
times, nodes only transmit periodic beacons which can be
clearly identified and used as a template. Vector vvv contains
the channel samples from the current K-dimensional sliding
window, which moves over the signal trace ỹyy, obtained after
the acquisition, filtering and downsampling of yyy. We adopted
the fast template matching scheme of [23] [24], which exploits
the Fast Fourier Transform (FFT), thus obtaining dot products
in the frequency domain. For a generic channel sequence ỹyy of
L > K samples, this allows the computation of the covariance
in O(L logL) time. Hence, the template matching operates
on ỹyy = (ỹ1, . . . , ỹL), outputting a sequence of correlation
estimates (r1, . . . , rL−K+1). We detect a possible beacon at
sample ` if r` is greater than a threshold rth. Then, since
multiple trivial matches (i.e., r` > rth) are likely to occur
within a window of samples, we perform a further peak
detection within the regions containing multiple matches, by
taking the default timing parameters of the IEEE 802.11ad
communication standard into account [25]. That is, two bea-
cons can never be placed at a distance smaller than the
minimum allowed by the protocol rules. As the final step, we
assess which beacon pairs actually mark the start of data bursts
by assessing the distance between them, as this is constant.
Through this, we can reliably detect false positives, such as
isolated beacons due to communication errors or to packets
that are erroneously detected as beacons as their shape closely
resembles that of the template. We found excellent results



across all our experiments setting rth = 0.75. Note that rth is
independent of the trace amplitude. Thus, we do not need to
readjust it for each scenario and/or trace.

The identification of pairs of beacons (C1) allows extracting
the data bursts {o(n)1:Tn

|n = 1, . . . , N} from ỹyy, which are fed as
input to the following EDHMM training phase. Longer beacon
sequences (C2) are likewise detected by looking at the number
of energy levels of the beacons therein and at their inter-frame
spacing, as dictated by the standard [25]. These events are
semantically decoded as described below.

VI. EDHMM TRAINING

For the EDHMM training we refer to Fig. 3. We recall that
the objective of this training phase is to reliably estimate the
distribution vector ppp, modeling the duration of inter-frame
spaces, packets and acknowledgements. This phase is executed
once offline and is not scenario dependent. Essentially, it
is a calibration step for the specific mm-wave technology
used in the network, which in our case is IEEE 802.11ad.
The traces used in this step should be as much as possible
stationary. This means that µi and σ2

i do not significantly
vary across data bursts. As a first processing stage, we use the
pre-processing procedure of Section V, which returns the data
burst set {o(n)1:Tn

|n = 1, . . . , N}. Next, for illustration purposes
we refer to the n-th data burst o(n)1:Tn

= (o1, . . . , oTn
), but

in our implementation the HMM parameters are estimated
using the entire burst set (i.e., the N bursts in the mm-wave
trace). For burst n, each of the samples ot, t = 0, . . . , Tn,
maps to an element st ∈ S , where state “1” means IFS, “2”
DATA and “3” ACK. Our goal is to accurately associate each
ot in the data burst with the actual protocol element i ∈ S
and, most importantly, to reliably estimate its duration PMF
pi(·). This estimation is performed having access to the noisy
observations (o1, . . . , oTn) of the actual protocol elements.

EDHMM initialization: we consider o(n)1:Tn
as training data

and our aim is to get accurate state duration estimates for the
EDHMM. This is achieved by deriving initial estimates for ppp
through a simpler HMM model. Once this vector is found, it
is refined using EDHMM training tools. The HMM parameter
vector is ΘHMM and the three fundamental steps involved in
the HMM model estimation are:
E1) The forward-backward algorithm is used to compute

metrics γt(i) and ξt(i, j) with t = 1, . . . , Tn, i, j ∈ S (see
Eq. (2)) for a given HMM transition structure and a list
of observations. These weigh the probability of getting
the observed sequence from the current model.

E2) The model parameter vector ΘHMM is adjusted through
the EM algorithm.

E3) The Viterbi algorithm [26] is used to compute the most
probable path via a Maximum Likelihood (ML) approach.

Step E2 returns the optimal parameter vector Θ?
HMM, whereas

E3 outputs the sequence of hidden states (s1, . . . , sTn) that
most likely generated the observed samples (o1, . . . , oTn

).
Specifically, we assume π1 = 1 as all the data bursts start

with a silence, right after the beacon pair. Moreover, the HMM

transition matrix AAA is constrained in the sense that the hidden
state sequence evolves according to structured trajectories [27].
In particular, we have a23 = a32 = 0, as there must be some
minimum inter-frame spacing between subsequent messages.
Also, we set aii = 1−1/Ts for i ∈ S, where Ts = 0.1 µs is the
channel sampling period after the downsampling of Section V.
This implies a geometrically distributed dwell time in each
state. Still, it serves as a sufficiently good initialization of the
transition matrix and increases the HMM models robustness
against random fluctuations in the channel dynamics.

The final parameter estimates Θ?
HMM strongly depend on

the initial vector Θ0
HMM for the EM evaluation (step E2). To

obtain good initial parameter estimates, we use the K-means
clustering algorithm, see [28], [29], which classifies the chan-
nel samples in the data bursts around |S| centers. The |S|
initial values of the centers can be randomly picked or taken
as the locations of the peaks in the empirical distribution of
the observed samples. The latter approach was implemented
and found to perform satisfactorily across all datasets. Upon
completion, the K-means algorithm returns |S| values for the
cluster centers, which are used as initial values for µi for
i ∈ S. The |S| variances σ2

i are derived from the distribution
of the samples clustered around the centers µi so obtained.

At this point, we use the Viterbi algorithm output (step
E3) to fit |S| two-parameter inverse Gaussian distributions
[30] [31] for vector ppp, where the range Di = {dmin

i , . . . , dmax
i }

for state i ∈ S is such that dmin
1 = · · · = dmin

|S| = 1 and
dmax
1 = · · · = dmax

|S| = D. In particular, we set D according to
the timing parameters of the IEEE 802.11ad communication
standard [25] and filter out all the state durations that are
outside these boundaries.

EDHMM model refinement: the initial estimate ppp that we
have found with the above HMM model is subsequently
refined through EDHMM training tools. Here, we opted for the
forward-backward algorithm proposed by Yu and Kobayashi
in [32], [33] as it is efficient and solves practical issues such
as numerical underflows occurring in the EM iterations.

VII. RUNTIME TRACE ANALYSIS

Next, we present a runtime analyzer that effectively deals
with the non-stationarity of the traces, i.e., variations in µi and
σ2
i for i ∈ S. As a first step, we run the pre-processing block of

Section V, which returns the data burst sequences {o(n)1:Tn
|n =

1, 2, . . . } through template matching. For each sequence, the
energy levels associated with the states IFS, DATA and ACK
are re-estimated, as explained in the following.

Gaussian-observation model update: we rely on assumption
A3, i.e., that channel statistics are stationary within each
data burst. Of course, µi and σ2

i may change considerably
across data bursts and we tackle this by running the K-
means clustering algorithm for each burst sequence o

(n)
1:Tn

,
so as to re-initialize vector bbb in an online fashion. The |S|
final values of the centers initialize µi, whereas the variances
of the samples clustered around these centers initialize σ2

i ,
for i ∈ S. Upon completing the K-means algorithm, we



obtain the updated parameter set Θ
(n)
EDHMM for the current

data burst, whereas vector ppp (which represents the “average”
time-frame duration statistics) remains fixed. We remark that,
for the current burst n, Θ(n)

EDHMM may differ from the optimal
parameter set Θ?

EDHMM, as for the latter vectors ppp and bbb would
be obtained through the ML approach of [32], [33], whereas
in Θ

(n)
EDHMM the energy levels in bbb are estimated on-the-fly

through K-means. Since the latter approach does not take into
account the joint re-estimation of ppp and bbb, the resulting energy
levels are less accurate. However, this approach provides a
substantial speedup as neither the re-estimation of the tran-
sition matrix AAA nor that of vector ppp are required and these
computations account for most of the EDHMM complexity.
Hence, the benefit due to the increased speed outweighs the
loss in accuracy.

Online estimation via time-adaptive EDHMM: upon obtain-
ing Θ

(n)
EDHMM for the current data burst o(n)1:Tn

, the correspond-
ing hidden state sequence (s1, . . . , sTn) is reconstructed using
the Viterbi algorithm with samples o(n)1:Tn

= (o1, . . . , oTn
), i.e.,

each sample ot is mapped onto one of the elements in S.
As suggested in [34], we implemented the Viterbi algorithm
using logarithms to avoid numerical underflows. Also, given
the sequence of observations o(n)1:Tn

, the time complexity of
the Viterbi algorithm for EDHMM is O(|S|ZTnD), where Z
is the average number of predecessors for each state i ∈ S.
In our case, Z < |S|, since we set a23 = a32 = 0 (states
2 and 3 respectively denote DATA and ACK). Moreover,
since durations are explicitly accounted through pi(·), we have
aii = 0, ∀ i ∈ S and Z = 4/3. Hence, the computational cost
of the Viterbi algorithm is primarily affected by the data burst
length Tn and by the maximum duration D.

VIII. EVALUATION

In the following, we evaluate our diagnosis tool in practice
using the setup in Section V. First, we validate our machine
learning framework in controlled scenarios. Next, we study the
behavior of indoor links for regular operation, that is, without
disturbances such as link blockage. Finally, we focus on how
our framework can identify and characterize such disturbances.

A. Validation
Fig. 6 shows a trace decoding example for our diagnosis

tool. In the upper part of the figure, we show the raw trace
as captured by the Sivers IMA converter. The two initial
frames are beacons that indicate the start of a data burst.
After that, we observe a sequence of data and acknowledgment
frames (c.f. Fig. 1). The lower part of the figure shows that
our framework can correctly identify all frames in the trace.
We observe that the framework successfully classifies data
packets, acknowledgments, beacons, and inter-frame spacing.
Moreover, Fig. 6 also demonstrates the need for our EDHMM
approach. The HMM method wrongly classifies many of the
samples—within a data or acknowledgment frame, it often
fluctuates between states. In contrast, the EDHMM classifies
all samples correctly, even in case of varying data packet
lengths (not shown in Fig. 6 due to space constraints).
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Fig. 6. Trace decoding example for our machine learning framework.
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Fig. 7. Number of data and control packets identified by our tool. We show
the results for two sniffers SN1 and SN2 placed at different locations.

In addition to the visual inspection in Fig. 6, we validate
our framework using two approaches. First, we compare the
number of data packets that our tool identifies with the number
of packets that the driver of our 60 GHz device reports. For
the case without blockage in Fig. 7, the driver reports 31960
sent packets at the end of the trace. This matches the data
packet counter in our results. Second, we record the same
data exchange using two independent sniffers SN1 and SN2,
and process the resulting traces using our framework. For
no blockage, Fig. 7 shows that both sniffers count the same
number of both data and control packets. This again validates
that our framework is correctly decoding the trace. For data
packets, the counter stabilizes at one second at which point we
stop the data transmission. Still, the control packet counter
increases steadily because the devices continue to exchange
control packets even if no data transmission is taking place.

Fig. 7 also depicts similar measurements for two blockage
cases which we discuss in Section VIII-C. The first is a “hard
blockage”, that is, crossing the link and thus interrupting it
completely for a few milliseconds. The second is a “soft
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Fig. 8. CDF of packet and burst lengths for three links deployed in the same
environment but with varying performance. “BP” stands for beampattern.

blockage”, which refers to partial blockage such as waiving a
hand in the boresight of the antenna.

B. Regular Operation

Next, we show some selected diagnosis capabilities of our
tool for regular link operation. Fig. 8 depicts the Empirical
Cumulative Distribution Function (ECDF) of the packet and
burst lengths that our tool computes for different links. All
links have the same length and are deployed in the same
location. However, we change their orientation to induce
different antenna beam patterns which result in suboptimal per-
formance, and which our framework can identify. The protocol
used by our 60 GHz test devices defines that the maximum
burst length is two milliseconds and the maximum aggregated
packet length is 20 microseconds. Since we perform this
experiment with full transmission buffer at the nodes, the burst
and packet lengths should match the maximum values.

For Link 1 in Fig. 8, we observe that the packet lengths
do not match the maximum size. While the burst lengths are
as expected, the significant fraction of short packets shows
that Link 1 is not operating properly. Indeed, our framework
also reveals that the trace energy level differs compared to
Link 2, which suggests antenna misalignment. We omit the
energy trace level in the interest of space but the device driver
reveals that both Links 1 and 2 operate otherwise identically in
terms of MCS and traffic load. In other words, our framework
successfully identifies the suboptimal device orientation for
Link 1. Fig. 8 shows that Link 3 performs even better in terms
of packet length. Again, the device driver confirms this insight
since Link 3 uses a more robust MCS than Link 2. Thus, Link
3 is more likely to succeed when transmitting longer packets.

C. External Disturbance

Regarding external disturbances, we focus on the case
of link blockage. Our tool is able to identify and classify
such blockage. This provides means for network operators to
determine how often blockage actually occurs for a certain
mm-wave link during a certain time-frame, for instance, a day.

Identifying blockage is challenging because it may block the
LOS path to the sniffer, too. To prevent this, our framework
can record and compare the channel activity from two or
more sniffers at different locations, as shown in Fig. 9. We
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Fig. 9. Blockage recorded from two different locations SN1 and SN2. The
figure shows a fraction of the blockage, i.e., the blockage affects all samples.

1.5 1.6 1.7 1.8 1.9 2.0

Time [s]

0.0

0.1

0.2

0.3

0.4

A
m

p
lit

u
d
e
 [
V

]

SN
1 BR location

1.5 1.6 1.7 1.8 1.9 2.0

Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

A
m

p
lit

u
d
e
 [
V

]

SN
2 BR location

Fig. 10. Beam refinement sequences during soft link blockage.

observe that while sniffer SN1 barely receives any of the
activity prior to second 1.93, SN2 is able to receive all frames
during the blockage. This allows our framework to obtain
a much more complete view of the activity on the channel.
Based on this information, we automatically identify beam
refinement (BR) sequences. Such sequences are rare in static
scenarios but are likely to occur if the link is impaired. Fig. 10
depicts a segment of the trace in Fig. 9, overlapped with the
locations at which our framework identifies BR sequences.
We observe that the BRs identified by both sniffers match but
that not all sniffers capture all sequences due to the blockage.
This highlights again the benefit of being able to analyze the
network behavior from multiple viewpoints. Moreover, Fig. 9
depicts a soft blockage. Thus, the connection does not break
and the device continuously adapts its beampattern, resulting
in a large number of BRs. In contrast, hard blockage results
in less BRs since the transmitter and the receiver cannot
communicate during the blockage. Table I shows the average
number of BRs per trace for no blockage, soft blockage, and
hard blockage. The difference in terms of BR frequency allows
our diagnosis tool to classify blockage. This is highly valuable
to determine why a mm-wave link is performing poorly.

In Fig. 7, we also show packet counters for the case of
blockage. The data packet counter for hard blockage stabilizes
at roughly 40000 packets because we stop transmission at that
point. For soft blockage, we transmit continuously and thus
the packet counter increases throughout the trace. We observe
that the data packet counters for each sniffer disagree as soon



TABLE I
BEAM REFINEMENT SEQUENCE FREQUENCY FOR BLOCKAGE SCENARIOS

No Blockage Hard Blockage Soft blockage
0 BRs/trace 0.42 BRs/trace 4.02 BRs/trace

as blockage occurs. The underlying reason is that one of the
sniffers does not receive the full channel activity while the
other one does. While not as unambiguous as the detection
of BRs, this also hints at potential blockage scenarios. We
observe that hard blockage causes a stronger disagreement
than soft blockage, providing means to differentiate them. The
mismatch among sniffers is less explicit for control packets
since the shape of such patterns is easier to identify than the
shape of data packets. Hence, both sniffers are more likely to
correctly decode such control packets even in case of blockage.

IX. CONCLUSION

We use machine learning techniques to design, implement,
and evaluate a diagnosis tool for IEEE 802.11ad networks.
Our tool uses narrowband physical layer energy traces of one
or more sniffers to identify lower-layer performance issues.
Network planners, administrators, as well as researchers can
use our tool to improve the performance of mm-wave networks
even though COTS networking devices provide no access to
lower-layer information. To address the non-stationarity of
energy traces, we use sophisticated machine learning tools and
dynamically update the parameters of our model. Moreover,
we use a combination of template matching and an EDHMM
to deal with the complex characteristics of the traces and the
behavior of IEEE 802.11ad devices. As a result, we achieve
an ideal trade-off between the efficient but limited monitoring
capabilities of IEEE 802.11ad devices in monitor mode, and
the highly detailed but costly decoding of full bandwidth
signals using software-defined radios. Finally, we use practical
COTS 60 GHz hardware to validate our tool and show that it
correctly identifies lower-layer performance issues.
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