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Abstract—In this paper we present an analytic approach to
performance analysis of ad hoc networks under non saturation
conditions, which does not rely on any assumption on traffic
statistics. Our approach assumes traffic to be constrained by
leaky bucket arrival curves, and it relies on a coupled processors
model to capture the dependencies between user achievable rates
due to sharing of the wireless transmission medium. We derive
sufficient conditions for stability of transmission queues in an ad
hoc network, and we describe a method for the determination
of a proportionally fair allocation of resources, which allows
trading the fairness of the solution for computational complexity.
We validate our results through simulations, showing how our
approach allows deriving operating points which both increase
the fairness of the allocation and the overall average utilization
of network resources with respect to saturated models.

I. INTRODUCTION

Wireless mesh networks based on IEEE802.11 are nowa-
days an inexpensive, well widespread solution to easily, ef-
fectively and wirelessly connect entire cities. Thanks to such
pervasiveness, they are poised to play a central role in many
“Internet of Thing” application scenarios, with very diverse
QoS requirements. Such wide deployment makes it crucial
to develop models for analytical performance study of such
networks, as empirical studies in such a complex environment
hardly give clear indications on general properties of such
systems. Performance analysis of the 802.11 CSMA/CA mech-
anism has traditionally focused on saturated traffic assumption
[2]. Many of the available results for non-saturated conditions
do not capture the effects of traffic dynamics on system
performance. [9] for example, assumes that the probability
of transmission and the probability of success of the stations
in non-saturated conditions is always the same during time,
despite traffic dynamics do alter significantly such quantities.
[7] expands the work of Bianchi to unsaturated conditions,
including transmission errors and capture effects. All of these
approaches are based on a Poissonian traffic assumption, and
they depend heavily on the assumption of traffic stationarity.
[10] analyzes non saturation in heterogeneous traffic condi-
tions, but its results still requires a complete stochastic traffic
characterization to be parametrized. This has been done despite
the fact that traffic in real networks is well far from being
Poissonian (see [11] and related literature). In particular, traffic
from live audio/video streaming exhibits a periodic behavior
which substantially departs from the Poisson model, and which
is characteristic of several known examples of instability [1].
This leaves open the issue of how to derive valid performance
guarantees in ad hoc networks in realistic settings, when little
is known about traffic statistics.

In the present work we propose a different approach, which
assumes traffic to be constrained by leaky bucket arrival curves
[4], which limit the maximum amount of bits which can arrive
in a given time interval. Our analysis is based on a coupled
processors model [3], which allows capturing the dependencies
between user achievable rates due to sharing of the wireless
transmission medium (mediated by the CSMA/CA mecha-
nisms) and traffic dynamics, which such coupling entails. For
the analysis of such model, we adopt the approach recently
proposed in [13], based on Network Calculus.
The main contributions of this paper are as follows.

• We present an analytical approach to the study of ad
hoc networks under non saturation conditions, which
assumes traffic to be leaky bucket constrained. By
applying our approach, we derive sufficient conditions
for stability of transmission queues in ad hoc net-
works.

• We present a computationally feasible method for the
determination of a proportionally fair allocation of
resources in ad hoc networks, which allows trading the
amount of fairness of the solution for computational
complexity.

• We validate our results through simulations, assessing
the quality of the bounds and of the optimal allocations
derived with our approach.

The paper is organized as follows. Section II introduces
the system model, and the main assumptions underlying our
analysis. In Section III we introduce our method based on the
coupled processor model, and we derive sufficient conditions
for stability of our network. Section IV presents a heuristic for
the computation of a proportionally fair operating point for the
system. In Section V we assess numerically our results, and
in Section VI we conclude our work.

II. SYSTEM MODEL

We consider a scenario with N hosts communicating via
the IEEE 802.11 protocol in ad hoc mode. We assume all hosts
are in range of each other. We assume hosts do not suffer
for interference and that they do not move. Moreover, their
capacity to each other does not change over time.
We do not make any assumption on the traffic generated by
applications at each host. However, we assume that such traffic
is passed through a leaky bucket controller [4], before being
sent through the wireless connection. This device forces its
output to be constrained by a leaky bucket arrival curve, with



parameters σ (burstiness) and ρ (rate). That is, if A(t) is the
cumulative arrival rate at the output of the controller, ∀t ≥ 0,
∀t′ ≤ t, A(t)−A(t′) ≤ σ+ρt [4]. At the controller, all arrivals
from the application which do not conform to such arrival
curve are buffered. Introducing such controller allows to tune
the amount of traffic buffered at the transmission queues of the
hosts and, possibly, to avoid some pathological conditions for
the system. For instance, it may happen that few hosts with
a poor channel jeopardize the medium, at the expense of all
other hosts. In these cases, constraining the traffic sent to the
network by each host might help achieving a better allocation
of system resources. For instance, this could be implemented
at the application layer through communication among nodes,
adjusting the operating point of the system in order to optimize
a given utility function (e.g., in order to achieve some form
of fairness). Moreover, assuming some form of constraint on
sources allows dividing hosts into classes, with different ser-
vice levels for each class. We assume traffic to be packetized,
with a finite number of possible packet sizes.
Finally, let us briefly recall the definition of Generalized
Processor Sharing (GPS) node [4]. A GPS node with n queues,
total service rate R, and queue weights wi, i = 1, ..., n, serves
traffic at the i-th queue at time t at a constant rate aiR where
ai is the ratio between wi and the sum of the weigths of all
nonempty queues at t.

III. A CPS BASED ANALYSIS OF AD HOC NETWORKS

In this section we present an analytical method for the
analysis of ad hoc networks under non saturation. First we
introduce the coupled processor model, by which we capture
the coupling in performance which characterizes ad hoc net-
works. Then we present our main results, based on a worst case
approach to coupled processors systems. Finally, we describe
a practical method for deriving performance bounds, based on
an approximation technique which adapts to the characteristics
of the system under study and of the specific performance
problem to solve.

A. A CPS model for ad hoc networks

A crucial aspect of performance analysis in an ad hoc
network is to being able to capture the effect of traffic of a
given user on the performance experimented by other users.
In what follows, we address this issue by modeling these
interaction by means of a coupled processors model [3]. A
CP system (CPS) is a set of parallel queues (i.e., queues
which do not exchange traffic among them) served by work
conserving schedulers, and whose service rates at any time t is
completely determined by the set of active queues at that time.
We define as the state of the system at a given time t the array
I(t) = (I1(t), I2(t), ..., IN (t)) where for each node i, Ii(t) is
a binary variable which is equal to 0 if the queue at the i−th
node is empty at time t, and 1 otherwise. Then at time t the
service rate of the i-th queue in I(t) is Ri(t) = Ri(I(t)), i.e.,
it is only function of the state of the system at time t.
In what follows, we model our N -node ad hoc network as a
N -queue CPS, with one queue per transmitter. In such system,
the coupling is in users transmission rates. Such coupling
arises from sharing the same transmission medium, and is
mediated by the CSMA/CA algorithm. The state I(t) of such
CPS is given by the set of active ad hoc transmitters at time

t. In modeling our ad hoc network as a CPS, we assume
that for each ad hoc transmitter i at time t, the service rate
Ri(t) is completely determined by the state of the system.
For each state of the system, we characterize the underlying
CPS through the saturation throughput of the subset of active
nodes, derived in [2]. That is, ∀t ≥ 0, if I(t) is the set of active
transmitters at time t, the instantaneous service rate at the i-th
active transmitter is given by:

Ri(t) =
PsPtrE(P )

(1− Ptr)δ + PtrPsTs + Ptr(1− Ps)Tc
. (1)

Here, Ts is the average time the channel is sensed busy
because of a successful transmission. Tc the average time the
channel is sensed busy by each station during a collision; Ps
is the probability that a transmission occurring on the channel
is successful, which is given by the probability that exactly
one station transmits on the channel, conditioned on the fact
that at least one station transmits. Ptr is the probability that
there is at least one transmission in the considered slot time.
E(P ) is the average packet payload size, and δ is the duration
of an empty slot time. All these parameters can be computed
directly from the parameters of the CSMA/CA protocol, and
they refer to the particular set of active transmitters I(t). For
the expressions of each parameter, please refer to [2].
Indeed, in an ad hoc network the instantaneous service rate
is determined by the CSMA/CA algorithm, and for a same
system state (set of active queues) it generally varies over
time. Therefore, as it is common in the study of such systems
[2], in adopting a CPS model for such ad hoc network we are
assuming that those system dynamics due to the CSMA/CA
mechanisms take place on a smaller time scale than traffic
dynamics (more specifically, the events of queues getting
empty or full), so that they can be adequately modeled
through their average effect on the system. Furthermore,
while the ad hoc transmissions are scheduled sequentially, via
contention, and the change of system state can happen only
when a new host is scheduled, we assume the equivalent CPS
model works at the “fluid” limit, i.e., each queue serves its
traffic as it were infinitely divisible, and it can change state
at any time t. In Section V we assess the validity of such
assumption, showing numerically that these approximations
model accurately the performance of our ad hoc network.

B. Sufficient conditions for stability

In this section we use the CPS model to derive an inner
bound to the stability region for an ad hoc network, i.e., a set
of leaky bucket rates for which traffic can be sustained by the
ad hoc network without losing packets (when buffers in the
network have a finite size) and with a finite bound on delay.
Our analysis is based on [13]. Differently than other results
in the literature, such an approach is purely analytic and, as
we show, it enables the derivation of heuristics that suitably
trade-off accuracy for computational complexity. The first step
consists in the derivation, from our N -queue CPS, of a set
of feed-forward networks (which we call auxiliary networks)
each composed by N GPS nodes, as depicted in Fig. 1, whose
stability implies the stability of the CPS.

Let us label the queues of the CPS from 1 to N . With
n = n1, ..., nN we indicate one of the possible mappings
which associates the j-th stage of the feed-forward network,
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Fig. 1. A three-nodes CPS, and the structure of an auxiliary network,
associated to the mapping {1, 3, 2}.

j = 1, ..., N to the nj th node of the CPS, j, nj = 1, ..., N .
To this mapping it corresponds a specific auxiliary network,
composed by N GPS nodes.
In what follows, we briefly describe the structure of such
network. We assume arrivals at the CPS queues are exactly
the same at their corresponding GPS nodes in the auxiliary
network, at any time t. The GPS nodes are connected according
to the sorted list n, in a feed-forward configuration: the first
node receives the traffic that in the CPS corresponds to the
first queue in n, i.e., n1. The second node receives the traffic
corresponding to n2, plus a rescaled version of the output of
the first GPS node. In general, the j-th GPS node receives the
traffic of the nj-th CPS queue plus a rescaled version of the
traffic served by GPS nodes ∈ {1, ..., j − 1}. Fig. 1 shows an
example with N = 3.
Each GPS node is composed by two queues, and it works
at the fluid limit. One queue is dedicated to rescaled traffic,
while the other is dedicated to fresh arrivals (i.e., arrivals from
applications at each host). The total service rate of the j-th GPS
node Rupnj

is the same as the nj-th CPS queue when the CPS
queues {nj , nj+1, ..., nN} are all active. The GPS weights are
w = Rsatnj

/Rupnj
for fresh traffic, and 1 − w for traffic from

the policer, where Rsatnj
is the service rate at the nj-th CPS

queue when all queues at the CPS are active. Through the
GPS scheduling, rescaled traffic models the effect of coupling
between CPS queues on service rates, by decreasing the service
rate offered to fresh traffic by an amount determined by the
GPS coefficients.
The tuning of the rescaled traffic is achieved through the use
of scalers [8], system components that reduce or amplify the
volume of traffic moving from a queue to another in the
network. More specifically, a scaler with scaling factor S, is
a device such that if for any t, τ ≥ 0, A(t)− A(t− τ) is the
amount of traffic which arrived at its input in the time interval
[t − τ, t], the traffic at its output in the same time interval is
S(A(t)−A(t− τ)). In our auxiliary network, we assume the
scaling factor Sj,k for the traffic going from the k-th stage
(k = 1, ..., j − 1) to the j-th GPS node is equal to:

Sj,k =
Rupnj
−Rk,upnj

Rupnk

(2)

where Rk,upnj
is the service rate at the CPS node nj when the

CPS nodes np, ..., nN are active.
For our ad hoc network, having defined the structure of each
of the N ! auxiliary networks makes it possible to compute
performance bounds, by applying some well known Network
Calculus results on each of these networks. Exploiting the
properties of the set of auxiliary networks, the following result
defines a set of sufficient conditions ensuring that the leaky
bucket rates for fresh traffic ρj , j ∈ 1, ..., N , yield a stable
behavior for our system.

Theorem 3.1: With the given assumptions on the ad
hoc network, and given a set of leaky bucket parameters
(ρj , σj), j = 1, .., N for fresh traffic, if it exists at least one
auxiliary network such that at each stage j = 1, ..., N , ρj
satisfies

ρj ≤ max

(
Rsatnj

, Rupnj
−
j−1∑
p=1

Sj,pρnp

)
(3)

then the ad hoc network is stable.

Proof: (sketch) This result is a direct application of the
stability conditions for CPS in [13]. It is derived by first
showing that the choice of scaling values in (2) guarantees
that if at least one auxiliary network associated to our system
is stable for a given set of leaky bucket traffic descriptors,
then the ad hoc network is stable for those traffic descriptors.
Indeed this choice brings to have at each GPS node a service
rate for fresh traffic that, at an time t, is always not greater
than the one offered at its corresponding node at the CPS that
models our ad hoc network. Then the sufficient conditions are
computed from analyzing the feed-forward network by stages,
and they derive from imposing node stability at each GPS [13].

In those cases in which it exists at least one auxiliary network
for which the sufficient conditions in Theorem 3.1 are satisfied,
hard bounds on backlog at the transmitter queues and on packet
delay can be easily derived, by application of basic Network
Calculus results at each node of the auxiliary network (see,
e.g., [4], [13]).

IV. DERIVATION OF THE OPTIMAL OPERATING POINT

A. Problem Formulation

As already discussed, choosing the leaky bucket parameters
of traffic sources in our networks allows tuning the operating
point of the system, possibly in order to maximize some utility
function. For instance, in order to guarantee that some form of
fairness is maximized. In the present work, the utility function
that we choose to optimize is a weighted fairness function,
which is one possible way of balancing some notion of fairness
among users with, for instance, different classes of service. Its
expression is:

U =

N∑
i=1

wi log

(
ρi
ρ0

)
, (4)

where ρ0 is the minimum bit rate for an acceptable perfor-
mance for the application. The feasible set of leaky bucket
rates over which to optimize such utility is given by the set of
inequalities in Theorem 3.1, as they define the set of rates for
which the ad hoc network is able to serve the traffic load with



a finite maximum packet delay and backlog at each node.
The feasible operating points which maximize the weighted
fairness are therefore the solutions of the following optimiza-
tion problem, computed over the set of auxiliary networks and
of fresh traffic leaky bucket rates:

maximize
ρ≥0,n∈N

N∑
i=1

wi log

(
ρni

ρ0

)
;

subject to:
∀n, ∀j = 1, . . . , N,

ρnj +min

(
Rupnj
−Rsatnj

,

j−1∑
p=1

Rupnj
−Rp−upnj

Rupnp

ρp

)
≤ Rupnj

,

(5)
where the constraints derive from Theorem 3.1. N is the set
of the N ! possible permutations of the labels of ad hoc users
(i.e., CPS queues).
Solving this problem is challenging for two main reasons: (i)
the presence of the min function in the constraints, which leads
to a non-convex feasibility region; and (ii) the complexity of
the problem, which scales factorially with N .

B. Heuristic Approach

In order to practically solve the above problem, we propose
a heuristic approach that consists in two parts.
The first part aims at reducing the problem to a tractable
problem that can be solved with standard tools. Specifically,
since the presence of the min function in the constraints of the
above problem leads to a non-convex feasibility region, we use
the so called big-M transformation [12]. In such way, the two
terms of the min in (5) are not active at the same time. Instead
of that constraint, the method builds two constraints in which
we add a binary variable multiplying a large constant value
M . Whenever the binary variable is equal to one, the large
constant makes the constraint useless because all the feasible
sets of leaky bucket rates satisfy it, while when the binary
variable is zero the constraint is active. By choosing a value for
the binary variables we select a part of the feasibility region.
The problem obtained in this way belongs to the mixed-binary
programming family. We solve it by means of the branch-
and-bound method [5]. For each n, we stop the branch-and-
bound evaluation when the intermediate solution is at most at
ε away from the optimum. Tuning ε allows achieving different
tradeoffs between computational cost and optimality of the
solution.
The second part of our heuristic aims at reducing the number
of auxiliary networks over which to search for the optimum.
It is based on running a set of greedy searches from a set of
starting points, each of which has been derived as follows.
To each node j = 1, ..., N of the CPS, we associate the
quantity 1

wj
. Then, starting from the first stage of the auxiliary

network, we assign a node of the CPS to each stage with a
probability proportional to this quantity. The idea underlying
such algorithm for the choice of the starting points is that
nodes with higher weights wi in the utility function need to
be modeled more accurately than the others. This is achieved
by assigning those nodes to the last stages of the auxiliary
network. Indeed, due to the structure of the auxiliary network,
the lower the stage a node belongs to, the larger the set of nodes
whose coupling with the considered one is modeled through

TABLE I. SETUP OF THE WIRELESS SCENARIO

Available Channel Speeds (Mbit/s) 1;2;5.5;6;9;11;12

18;24;36;48;54

CWmin 16

Backoff stages 5

Preamble + PHY header(µs) 20

SIFS (µs) 16

ACK Time (µs) 24

DIFS (µs) 34

Slot time (µs) 9

MAC header(bits) 224

Chunk size (bits) 15000

accurate rescaled traffic rather than via a conservative penalty
on the service rate, holding for any time t, and therefore
independent on traffic patterns at interfering nodes.
We describe now the elementary step of the search. From a
network n, we consider the set of N − 1 networks obtained
by a swap of two contiguous nodes in n. If the log utility
value of n is lower than the max log utility among all these
N −1 networks, the network with the highest log-utility value
among all the N − 1 is selected. Otherwise, the search stops.
The largest of all local maxima computed from all starting
points is the final output of our heuristic. By changing the
number of starting points we can achieve different trade-offs
between computational cost and optimality of the solution.

V. NUMERICAL EVALUATION

In this section we assess numerically our results. First, we
evaluate the fitting of the proposed CPS model for a WiFi
network. In particular, we evaluate the impact of assuming
the saturation throughputs in (1) as the service rates of the
CPS equivalent model. Then, we evaluate the performance of
our heuristic, for proportional fairness. The operating points
derived with our approach are compared to those obtainable in
saturated condition, i.e., assuming all queues are always active,
in function of the number of users in the system. Moreover,
whenever feasible, i.e., for settings with only a few nodes,
less than 7 in our evaluations, we have compared our results
with those obtainable by solving the optimization problem
(5) through brute force over all the upper bounding networks
presented in Section III-A.
The parameters used in the considered scenarios are presented
in Table I. We have chosen the 802.11 b/g standard for WiFi
communications. The values of the parameters are derived
from [6].

A. CPS Model Validation

In this section, we evaluate the fitting of the CPS model
for 802.11 communications. In particular, for different sce-
narios, we pick at random a stable set of arrival rates for
the transmitters. Such decision ensures that the set of active
transmitters present in the wireless scenario, i.e., the system
state changes over time. Then, for each system state and for
each transmitter, we evaluate the difference among the average
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Fig. 2. Probability density function, difference Simulations vs. CPS service
rates.

throughput achieved during simulations and the service rate
used in the CPS model, i.e., (1). Fig. 2 presents the probability
density function (pdf) of the differences for scenarios having
3 and 7 nodes. Similar results have been obtained also for
different set-ups of the wireless scenario.
In both cases, the service rates used in the CPS modelling are
close to the ones computed during simulations. In particular,
in the 99.73% and the 97.26% of the cases, respectively,
the absolute value of the difference among the service rates
computed as in (1) and the corresponding ones achieved
through simulations is less than the 10% of the ones achieved
through simulations. Even if the system assumes a given state
just for a short interval of time, i.e., even if the subset of
active transmitters does not change just for a limited period, the
above result shows that the saturation throughput (1) is reached
fairly soon in almost all the cases. Therefore, we consider as
negligible the impact of the approximations introduced during

the modelling of the system as a CPS.

B. Proportional Fairness Optimization Results

In this section we evaluate the results achieved through the
optimization problem (5) in a large set of scenarios. In each
setting, we solve (5) exploiting our heuristic, computing for
a given number of users the set of leaky bucket rates which
maximize the log-utility function.
In the following, the weights wi of the utility function, defined
in Section IV-A, are uniformly distributed in [0, 1]. Instead
of considering a specific propagation model, and modelling
its impact on the achievable channel speeds, for each user
we assigned channel speed randomly, assuming speeds to be
uniformly distributed among the set of available rates in Table
I. We have set the parameter ε for the branch-and-bound
algorithm to 5%. Furthermore, for a given number of users N ,
we considered a number of starting points for the heuristic,
i.e., a number of upper bounding networks, which scales with
N . Indeed, as N grows, it increases also the solution space,
as well as it does the space of possible values of the weights
of the utility function, and of the channel rates. Empirically,
and for the number of users considered in our evaluations,
we have found that scaling the number of starting points as⌈
N
2

⌉
brought acceptable results in terms of output of the

optimization and of computational complexity.
Overall, for each value of N we considered a total number
of instances of our setting (i.e., a particular choice of starting
points, set of weights and set of channel rates) sufficient to
get a 95% confidence interval within the 15% of the value of
the average utility U achieved. In any case, we never used less
than 100 instances.
A first objective of our numerical evaluation has been to
assess the performance of the proposed heuristic, which has
been introduced as a computationally feasible approach to the
problem of maximizing the (weighted) proportional fairness in
the allocation of leaky bucket rates among ad hoc users. More
specifically, we have tried to give an idea of how far are, on
average, the solutions of our heuristic from the optimal values,
in order to evaluate the impact of the approximations on which
the heuristic is based.
To this end, for scenarios with a small number of nodes
(for which an exhaustive search still brings to an acceptable
computational complexity), we have compared the average
log-utility derived through our heuristic with the one derived
through exhaustive search over all the possible upper bounding
networks and choosing a ε = 0%. From Table II we observe
that, in the considered scenarios, the solutions from our heuris-
tic bring a utility which is on average very close to the optimal
values derived through exhaustive search. This suggests that
the approximations on which our heuristic is based have an
overall low impact on the optimality of the operating point
derived.
In Fig. 3 we compare the average log-utility, together with
the 95% confidence interval, from our heuristic and the one
obtainable in the saturated scenario. Fig. 3 also contains the
median of the utility U in the same cases. We can see how in
all cases the average log-utility derived by optimizing (through
our heuristic) over the set of operating points which are stable
according to our method is always at least 18.43% larger
than the one derived by assuming the system in saturation.
Moreover, we see that the relative improvement brought over
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TABLE II. AVERAGE LOG-UTILITY: HEURISTIC VS. EXHAUSTIVE
SEARCH

Opt. technique 3 Nodes 4 Nodes 5 Nodes 6 Nodes

Ex. Search 3.4690 3.0688 2.8034 2.3933

Heuristic 3.4690 3.0590 2.7879 2.3630

Difference 0 -0.32% -0.55% -1.27%

Max Difference 0 -6.56% -10.64% -15.88%

by our heuristic over the utility achieved under saturation
assumption grows with the size of the scenario. The larger
is the number of the stations in the system, indeed, the higher
is the rate of contentions and, consequently, the inefficiency
of the MAC under saturation assumptions. Applying leaky
bucket controllers at the stations reduces the number of always
contending stations and therefore improves, as this result
confirms, the efficiency of the wireless channel. Nevertheless,
it is interesting to note that for both methods, the optimal value
of log-utility decreases when the number of nodes increases.
Therefore, also when the heuristic is applied, the devices face
an increase of the inefficiency of the MAC, even if in smaller
scale.
As we can see from the evaluation of the median in Fig. 3, the
difference between the optimal values of the utility function
derived with these two methods is relevant also in distribution,
and even larger than the one for the average.
In order to have a better idea of the difference between the
operating points resulting from the heuristic and from the
saturation assumption, we have compared them on the basis
of the total average throughput, weighted in order to take into
account the relative contribution of each host to the utility of
the system. That is, the weights in these sums are the same as
those adopted in the utility function.
The results are shown in Fig. 4, where the case under analysis
is exactly the same used in Fig. 3. We see how our heuristic
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Fig. 4. Weighted Av. Throughput. Heuristic vs. Saturation Condition.

brings the system to an operating point for which the total
average throughput is at least 114.43% higher than the total
average throughput achieved under saturation assumptions.
This shows how our heuristic derives system operating points
that, besides maximizing the utility function, bring to a much
more efficient utilization of network resources.
In order to understand the feasibility of the proposed approach,
we analyzed the complexity of the heuristic we propose versus
the exhaustive search of Table II. In Table III we present first
the average number of networks the two methods analyze in
order to get the final log-utility of the system. In case of
the heuristic, we count the total number of upper bounding
networks analysed, considering all the

⌈
N
2

⌉
starting points. We

also present the number of optimizations problems which the
branch-and-bound method solves for each network. It can be
easily proven that, in the worst case, the number of branches
visited by the branch-and-bound for N nodes is

∑N−1
i=1 2N−i.

Results are shown up to the point at which the comparison is
computationally feasible (6 nodes), and for the largest scenario
we analyzed through our heuristic (11 nodes). We can see
how the heuristic requires a considerably inferior number of
evaluations (both in terms of upper bounding networks, both
in terms of branches), with a very limited impact on the
optimality of the value of the log-utility derived (as seen
in Table II). Please note that the different starting points of
the heuristic are completely independent from each other.
Therefore, the computational time can be reduced sensibly
if the heuristic is evaluated in parallel. Finally we evaluate
how the results change varying the number of starting points
and the value of ε. Also here, we evaluate all the scenarios
shown antecedently when 4 and 7 nodes were present in the
network. The results presented in Table IV use the setting
having ε = 5% and

⌈
N
2

⌉
starting points as a benchmark.

Even though the utility U remains almost the same in every
configuration of the heuristic, the weighted average throughput
changes sensibly. The most affecting parameter of the heuristic



TABLE III. COMPLEXITY OF THE HEURISTIC

Average Number Maximum Number

Network - Heuristic Network (N !)

3 Nodes 6 6

4 Nodes 17.15 24

5 Nodes 41.04 120

6 Nodes 59.22 720

11 Nodes 409.05 39.9 106

Av. Per-Network Av. Per-Network

branches - Heu. branches - Exhaustive Sear.

3 Nodes 4 4

4 Nodes 6.49 8.32

5 Nodes 9.47 12.87

6 Nodes 11.89 17.80

11 Nodes 29.11 -

TABLE IV. DEPENDENCE OF RESULTS ON ε AND ON NUMBER OF
STARTING POINTS (SP) HEURISTIC

4 Nodes 7 Nodes

U , ε = 5%, SP =
⌈
N
4

⌉
−0.64% −0.92%

U , ε = 0%, SP =
⌈
N
2

⌉
+0.02% +0.47%

U , ε = 10%, SP =
⌈
N
2

⌉
−0.02% 0%

U , ε = 5%, SP = N +0.24% 0.74%

Weight. Av. Th., ε = 5%, SP =
⌈
N
4

⌉
−1.99% −5.54%

Weight. Av. Th., ε = 0%, SP =
⌈
N
2

⌉
+0.11% +0.44%

Weight. Av. Th., ε = 10%, SP =
⌈
N
2

⌉
−0.08% 0%

Weight. Av. Th., ε = 5%, SP = N +1.10% +3.78%

is clearly the number of starting points used. Increasing
the number of starting points indeed, U and the weighted
throughput increases accordingly. Unfortunately, the number
of upper bounding networks increases 67.24% and 106.10%,
respectively, leading to a computationally expensive resolution
of the proposed optimization. On the other hand, considering as
acceptable the complexity of the proposed heuristic, reducing
the number of starting points results in an unnecessary lost
in performance, that can become tricky when the number of
nodes increases. The same reasoning applies when we evaluate
the choice of ε: sometimes the difference of performance is too
small to justify the decreasing of the value of ε. For instance,
the reduction of branches analysed when ε = 10% is of at
most the 20.03%, while the accuracy of performance estimates
remains similar. The presented heuristic represents, therefore,
a good trade-off among complexity and performance.

VI. CONCLUSIONS

In the present paper, we have proposed a new analytical
method for the analysis of ad hoc networks, valid for any
number of nodes. Our method does not require the traffic to
be Poissonian, nor to be stationary, but only to be constrained

by a deterministic arrival curve. We have described a heuristic
for the derivation of a stable and proportionally fair allocation
of resources. Our approach can be easily expanded to a vast
class of arrival curves. We plan of extending our work by
expanding our method to model more complex and more
realistic scenarios, to those cases in which the connectivity
graph of the ad hoc network is not a full mesh, as well as to
settings where coupling is also due to interference.
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