
Distributed Slicing in Dynamic Systems
Antonio Fern�andez Anta, Vincent Gramoli, Ernesto Jim�enez, Anne-Marie Kermarrec, and Michel Raynal

Abstract—Peer to peer (P2P) systems have moved from application specific architectures to a generic service oriented design

philosophy. This raised interesting problems in connection with providing useful P2P middleware services capable of dealing with

resource assignment and management in a large-scale, heterogeneous and unreliable environment. The slicing problem consists of

partitioning a P2P network into k groups (slices) of a given portion of the network nodes that share similar resource values. As the

network is large and dynamic this partitioning is continuously updated without any node knowing the network size. In this paper, we

propose the first algorithm to solve the slicing problem. We introduce the metric of slice disorder and show that the existing ordering

algorithm cannot nullify this disorder. We propose a new algorithm that speeds up the existing ordering algorithm but that suffers from

the same inaccuracy. Then, we propose another algorithm based on ranking that is provably convergent under reasonable

assumptions. In particular, we notice experimentally that ordering algorithms suffer from resource-correlated churn while the ranking

algorithm can cope with it. These algorithms are proved viable theoretically and experimentally.

Index Terms—Slice, gossip, churn, peer-to-peer, aggregation, large scale

Ç

1 INTRODUCTION

THE peer to peer (P2P) communication paradigm has
now become the prevalent model to build large-scale

distributed applications, like VoIP [2] and VOD [3], able to
cope with both scalability and system dynamics. This is
now a mature technology: P2P systems are moving from
application-specific architectures to a generic-service ori-
ented design philosophy. More specifically, P2P protocols
integrate into platforms on top of which several applica-
tions, with various requirements, may cohabit. This leads to
the interesting issue of resource assignment or how to allo-
cate a set of nodes for a given application. Examples of tar-
geted platforms for such a service are testbed platforms
such as Planetlab [4] and video streaming platforms where
some nodes are automatically selected to build an overlay
depending on their observed stability [5].

Even in a single application, a P2P system should be able
to balance the load taking into account that capabilities are
heterogeneous at the peers. This ability would be of great
interest since many works have unveiled the heavy-tailed
distribution of storage space, bandwidth, and uptime of
peers [6], [7], [8]. Currently, this heterogeneity has two
drawbacks. First, the service guarantees offered by the P2P
system are unpredictable and can consequently provide the
clients with a poor quality of service. Second, when low
capable peers are overloaded, the general performance of

the system can be affected. For example, the completely
decentralized P2P application, Gnutella, suffered from
congestion when applied to large-scale systems [9] because
nodes with a low bandwidth capability were queried. Con-
sequently, modern P2P applications select specific nodes
depending on their capabilities to improve the service. For
example, outliers detection platforms [10] identify malicious
nodes by propagating their associated suspicion values
while Skype [2] elects super-nodes among nodes with high
bandwidth that are not hidden behind a Firewall/NAT.

Large scale dynamic distributed systems consist of
many participants that can join and leave at will. Identify-
ing peers in such systems that have a similar level of
power or capability (for instance, in terms of bandwidth,
processing power, storage space, or uptime) in a
completely decentralized manner is a difficult task. It is
even harder to maintain this information in the presence
of churn. Due to the intrinsic dynamics of contemporary
P2P systems it is impossible to obtain accurate informa-
tion about the capabilities (or even the identity) of the
system participants. Consequently, no node is able to
maintain accurate information about all other nodes. This
disqualifies centralized approaches.

The slicing service enables peers in a large-scale
unstructured network to self-organize into a partitioning,
where partitions (slices) are equally-sized sets of nodes
that share some similarities. Such slices can be either allo-
cated to specific applications later on, or associated with
specific roles (e.g., normal peers and superpeers). Given a
set of nodes, each with a specific attribute value, the slic-
ing problem is for each node to learn in which portion (or
slice) of the system its attribute value belongs to. The
existing result tried to approximate slices by ordering
nodes depending on a random value drawn initially [11],
leading to a result whose precision depends on the
uniformity of the distribution of initial values. Among all
random values drawn in a range r, if not exactly half of
them belong to the lower half of r, then some nodes
would never find their slice. As we show in this paper,

� A. Fern�andez Anta is with IMDEA Networks Institute, Spain.
E-mail: antonio.fernandez@imdea.org.

� V. Gramoli is with the University of Sydney and NICTA, Australia.
E-mail: vincent.gramoli@sydney.edu.au.

� E. Jim�enez is with EPN, Quito, Ecuador, and Universidad Polit�ecnica de
Madrid, Spain. E-mail: ernes@etsisi.upm.es.

� A.-M. Kermarrec is with INRIA, France. E-mail: akermarr@irisa.fr.
� M. Raynal is with Institut Universitaire de France and University of

Rennes 1, France. E-mail: raynal@irisa.fr.

Manuscript received 19 Sept. 2014; revised 26 Feb. 2015; accepted 13 Apr.
2015. Date of publication 6 May 2015; date of current version 16 Mar. 2016.
Recommended for acceptance by Z. Tari.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2430856

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1030 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

this inaccuracy gets exacerbated in a dynamic environ-
ment where nodes may join and leave.

1.1 Contributions

This paper presents the first provably converging solution
to the slicing problem provided that attribute values belong
to some slice. More particularly, it presents two gossip-
based solutions to slice the nodes according to their capabil-
ity (reflected by an attribute value) in a distributed manner
with high probability. The first algorithm of the paper
improves the ordered slicing proposed algorithm [11] that
we call the JK algorithm in the sequel of this paper. The
second algorithm is a different approach based on rank
approximation through statistical sampling.

In JK, each node i maintains a random number ri, picked
up uniformly at random (between 0 and 1), and an attribute
value ai, expressing its capability according to a given metric.
Each peer periodically gossips with another peer j, randomly
chosen among the peers it knows about. If the order between
rj and ri is different from the order between aj and ai, random
values are swapped between nodes. The algorithm ensures
that eventually the order on the random values matches the
order of the attribute ones. The quality of the ranking can then
be measured by using a global disorder measure (GDM)
expressing the difference between the exact rank and the
actual rank of each peer along the attribute value.

The first contribution of this paper is to locally compute a
disorder measure so that a peer chooses the neighbor to
communicate with in order to maximize the chance of
decreasing the global disorder measure. The purpose of this
approach is to speed up the convergence. We provide the
analysis and experimental results of this improvement.

Then, we identify two issues that prevent accurate slicing
and motivate us to find an alternative approach to this algo-
rithm and JK.

On the one hand, once peers are ordered along the attri-
bute values, the slicing in JK takes place as follows. Random
values are used to calculate which slice a node belongs to.
For example, a slice containing 20 percent of the best nodes
according to a given attribute, will be composed of the
nodes that end up holding random values greater than 0.8.
The accuracy of the slicing (independent from the accuracy
of the ranking) fully depends on the uniformity of the ran-
dom value spread between 0 and 1 and the fact that the pro-
portion of random values between 0.8 and 1 is
approximately (but usually not exactly) 20 percent of the
nodes. This observation means that the problem of ordering
nodes based on uniform random values is not fully suffi-
cient for determining slices.

On the other hand, another motivation for an alternative
approach is related to churn and dynamism. It may well
happen that the churn is actually correlated to the attribute
value. For example, if the peers are sorted according to their
connectivity potential, a portion of the attribute space (and
therefore the random value space) might be suddenly
affected. New nodes will then pick up new random values
and eventually the distribution of random values will be
skewed towards high values. If this happens we say that the
churn is attribute-correlated.

The second contribution is an alternative algorithm solv-
ing these issues by approximating the rank of the nodes in

the ordering locally, without the application of random val-
ues. The basic idea is that each node periodically estimates
its rank along the attribute axis depending of the attributes
it has seen so far. This algorithm is robust and lightweight
due to its gossip-based communication pattern: each node
communicates periodically with a restricted dynamic neigh-
borhood that guarantees connectivity and provides a con-
tinuous stream of new samples. Based on continuously
aggregated information, the node can determine the slice it
belongs to with a decreasing error margin. We show that
this algorithm provides accurate estimation and recovery
ability in presence of attributes-correlated churn at the price
of a slower convergence.

1.2 Roadmap

The rest of the paper is organized as follows: Section 2 sur-
veys some related work. The system model is presented in
Section 3. The first contribution of an improved ordered slic-
ing algorithm based on random values is presented in
Section 4 and the second algorithm based on dynamic rank-
ing in Section 5. Section 6 concludes the paper.

2 RELATED WORK

Original proposed solutions for ordering nodes came
from the context of databases, where parallelizing query
executions is used to improve efficiency. A large majority
of the solutions in this area rely on centralized gathering
or all-to-all exchange, which makes them unsuitable for
large-scale networks.

2.1 Ordering Techniques

The external sorting problem [12] consists of providing a
distributed sorting algorithm where the memory space of
each processor does not necessarily depend on the input.
This algorithm must output a sorted sequence of values dis-
tributed among processors. The solution proposed in [12]
needs a global merge of the whole information, and thus it
implies a centralization of information. Similarly, the percen-
tile finding problem [13], which aims at dividing a set of val-
ues into equally sized sets, requires a logarithmic number of
all-to-all message exchanges.

Other related problems are the selection problem and the
f-quantile search. The selection problem [14], [15] aims at
determining the ith smallest element with as few compari-
sons as possible. The f-quantile search (with f 2 ð0; 1�) is the
problem of finding among n elements the ðfnÞth element.
Even though these problems look similar to our problem,
they aim at finding a specific node among all, while the dis-
tributed slicing problem aims at solving a global problem
where each node maintains a piece of information. Addi-
tionally, solutions to the quantile search problem like the
one presented in [16] use an approximation of the system
size. The same holds for the algorithm in [17], which uses
similar ideas to determine the distribution of a utility in
order to isolate peers with high capability—i.e., super-peers.

A less related problem but with motivations similar to
the slicing problem is the stratification problem [18] that
differentiates peers based on their attributes in the
context of incentive-based file sharing applications. Strati-
fication defines one set of similar nodes for each single

ANTA ET AL.: DISTRIBUTED SLICING IN DYNAMIC SYSTEMS 1031

node while the slicing problem defines sets of similar
nodes that are identical for all nodes. Finally, solving the
more general problem of aggregating global information
at each node can also solve the slicing problem without
the need for gossip [19], however, typical solutions
require multiple random walks per peer [20], a thousand
of them was shown effective on some networks [21].

2.2 Slicing Variants

More recently, gossip-based protocols were used to discrim-
inate nodes in a large network depending on their individ-
ual attributes. Some of them order nodes rather than slicing
them [11], some assume a different model [22], [23], [24]
and some aim at applying similar techniques to different
contexts [25], [26], [27].

The JK algorithm is an algorithm that helps the node with
the kth smallest attribute value, among those in a system of
size n, estimate its normalized index k=n. Initially, each
node draws independently and uniformly a random value
in the interval ð0; 1� which serves as its first estimate of
its normalized index. Then, the nodes use a variant of
Newscast [28] to gossip among each other to exchange ran-
dom values when they find that the relative order of their
random values and that of their attribute values do not
match. As the algorithm exchanges random values among
peers to reflect the order given by their attribute values, the
estimate quality depends on the accuracy of the random-
ness of the values. T-Rank [29] proposed to solve a similar
problem by ranking nodes and informing them about global
information. More recently, a gossip-based protocol for
ordering was also shown effective in renaming [30].

Sliver [23], [31] is a slicing protocol that adjusts the preci-
sion of slice membership by storing information about the
global network at each individual node. Each node keeps
track of the identity and attribute value it received so that it
can distinguish between a duplicated information (the same
attribute value from the same node received twice) from
useful information (attribute values received from different
nodes). The space needed at each is OðnÞ as Sliver solves the
slicing problem once a node obtains information about all
the nodes of the network.

Slead [24] addresses the problem of Sliver by using Bloom
filters to compress the global view of the system with a
bounded memory footprint. It exploits a dynamic Bloom fil-
ter to adjust to the changes of the attribute value distribution,
however, it prevents from adjusting the recency of informa-
tion used to compute the slice membership. DSlead [32]
improves Slead by adjusting the removal of stale information
from the Bloom filter using a function of time. Other slicing
solutions were investigated in the context of population pro-
tocols [33]. In this model, the nodes can neither store a large
amount of information nor generate random numbers.

The absolute slicing problem [22] is a variant of the slicing
problem in which the size of a slice represents a fixed num-
ber of nodes. The problem is different from the slicing prob-
lem in that the size is known when the algorithm starts. By
contrast, in the slicing problem, nodes cannot be aware of the
system size n. They ignore the exact number of nodes within
one slice as this is a fraction of n. Our preliminary version of
this work [1] was characterized as a typical gossip-based
technique as it helps reaching a global result with local

message exchanges in a large-scale system [25] but it did not
include the proof of convergence that we present here.

Since then, the slicing problem has found applications
to select nodes that can help bypass NAT [26], [27] in
networks. First, Whisper [26] ensures the integrity of mes-
sages exchanged between the members of each slice,
while ensuring confidentiality of the slice members to an
external observer. It generalizes the slicing service to
multiple dimensions, offering to segregate nodes into
groups depending on the node attribute values. Second,
RankSlicing [27] slices a peer-to-peer network to help
bypassing NAT, but aims at connecting peers that are
part of the same slice. It uses a similar notion of “age” as
our ranking algorithm to assess the recency of informa-
tion and discard stale information.

3 MODEL AND PROBLEM STATEMENT

3.1 System Model

We consider a system S containing a set of n uniquely iden-
tified nodes.1 The set of identifiers is denoted by I � N.
Each node can leave and new nodes can join the system at
any time, thus the number of nodes is a function of time.
Nodes may also crash. In this paper, we do not differentiate
between a crash and a voluntary node departure.

Each node i maintains a fixed attribute value ai 2 N,
reflecting the node capability according to a specific metric.
These attribute values over the network might have an arbi-
trary skewed distribution. Initially, a node has no global
information neither about the structure or size of the system
nor about the attribute values of the other nodes.

We can define a total ordering over the nodes based on
their attribute value, with the node identifier used to
break ties. Formally, we let i precede j if and only if
ai < aj, or ai ¼ aj and i < j. We refer to this totally
ordered sequence as the attribute-based sequence, denoted
by A:sequence. The attribute-based rank of a node i,
denoted by ai 2 f1; :::; ng, is defined as the index of ai in
A:sequence. For instance, let us consider three nodes: 1, 2,
and 3, with three different attribute values a1 ¼ 50,
a2 ¼ 120, and a3 ¼ 25. In this case, the attribute-based
rank of node 1 would be a1 ¼ 2. In the rest of the paper,
we assume that nodes are sorted according to a single
attribute and that each node belongs to a unique slice.
The sorting along several attributes is out of the scope of
this paper.

3.2 Distributed Slicing Problem

Let Sl;u denote the slice containing every node i whose nor-
malized rank, namely ai

n , satisfies l <
ai
n � u where l 2 ½0; 1Þ

is the slice lower boundary and u 2 ð0; 1� is the slice upper
boundary so that all slices represent adjacent intervals
ðl1; u1�; ðl2; u2�... Let us assume that we partition the interval
ð0; 1� using a set of slices, and this partitioning is known by
all nodes. The distributed slicing problem requires each
node to determine the slice it currently belongs to. Note that
the problem stated this way is similar to the ordering prob-
lem, where each node has to determine its own index in

1. The value n is observed instantaneously but may vary over time.

1032 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

A:sequence. However, the reference to slices introduces spe-
cial requirements related to stability and fault tolerance,
besides, it allows for future generalizations when one con-
siders different types of categorizations.

Fig. 1 illustrates an example of a population of 10 persons,
to be sorted against their height. A partition of this popula-
tion could be defined by two slices of the same size: the
group of short persons, and the group of tall persons. This
is clearly an example where the distribution of attribute
values is skewed towards 2 meters. The rank of each person
in the population and the two slices are represented on the
bottom axis. Each person is represented as a small cross on
these axes.2 Each slice is represented as an oval. The slice
S1 ¼ S0;12

contains the five shortest persons and the slice

S2 ¼ S1
2;1

contains the five tallest persons.

Observe that another way of partitioning the population
could be to define the group of short persons as the group
containing all the persons shorter than a predefinedmeasure
(e.g., 1:65m) and the group of tall persons as that containing
the persons taller than this measure. However, this way of
partitioningwouldmost certainly lead to have empty groups
that contains no nodes (while a slice is almost surely non-
empty). Since the distribution of attribute values is unknown
and hard to predict, defining relevant groups is a difficult
task. For example, if the distribution of the human heights
were unknown, then the persons taller than 1m could be
considered as tall and the persons shorter than 1m could be
considered as short. In this case, the first of the two groups
would be empty, while the second of the two groups would
be as big as the whole system. Conversely, slices partition
the population into subsets representing a predefined por-
tion of this population. Therefore, in the rest of the paper, we
consider slices as defined as a proportion of the network.

3.3 Facing Churn

Node churn, that is, the continuous arrival and departure of
nodes is an intrinsic characteristic of P2P systems and may
significantly impact the outcome, and more specifically the
accuracy of the slicing algorithm. The easier case is when the
distribution of the attribute values of the departing and
arriving nodes are identical. In this case, in principle, the
arriving nodes must find their slices, but the nodes that stay
in the system are mostly able to keep their slice assignment.
Even in this case however, nodes that are close to the border
of a slice may expect frequent changes in their slice due to
the variance of the attribute values, which is non-zero for
any non-constant distribution. If the arriving and departing
nodes have different attribute distributions, so that the distri-
bution in the actual network of live nodes keeps changing,

then this effect is amplified. However, we believe that this is
a realistic assumption to consider that the churn may be cor-
related to some specific values (for example if the considered
attribute is uptimemean or connectivity).

4 DYNAMIC ORDERING BY EXCHANGE OF RANDOM

VALUES

This section proposes an algorithm for the distributed
slicing problem improving upon the original JK algorithm
[11], by considering a local measure of the global disorder
function. In this section we present the algorithm along
with the corresponding analysis and simulation results.

4.1 On Using Random Numbers to Sort Nodes

This Section presents the algorithm built upon JK. We refer
to this algorithm as mod-JK (standing for modified JK). In
JK, each node i generates a real number ri 2 ð0; 1� indepen-
dently and uniformly at random. The key idea is to sort
these random numbers with respect to the attribute values
by swapping (i.e., exchanging) these random numbers
between nodes, so that if ai < aj then ri < rj. Eventually,
the attribute values (that are fixed) and the random values
(that are exchanged) should be sorted in the same order.
That is, each node would like to obtain the xth largest ran-
dom number if it owns the xth largest attribute value. Let
R:sequence denote the random sequence obtained by ordering
all nodes according to their random number. Let riðtÞ
denote the index of node i in R:sequence at time t. When not
required, the time parameter is omitted.

To illustrate the above ideas, consider that nodes 1, 2, and
3 from the previous example have three distinct random
values: r1 ¼ 0:85, r2 ¼ 0:1, and r3 ¼ 0:35. In this case, the
index r1 of node 1 would be 3. Since the attribute values are
a1 ¼ 50, a2 ¼ 120, and a3 ¼ 25, the algorithm must achieve
the following final assignment of random numbers:
r1 ¼ 0:35, r2 ¼ 0:85, and r3 ¼ 0:1.

Once sorted, the random values are used to determine
the portion of the network a peer belongs to.

4.2 Definitions

4.2.1 View

Every node i keeps track of some neighbors and their age.
The age of neighbor j is a timestamp, tj, set to 0 when j

becomes a neighbor of i. Thus, node i maintains an array
containing the id, the age, the attribute value, and the ran-
dom value of its neighbors. This array, denoted N i, is called
the view of node i. The views of all nodes have the same
size, denoted by c.

4.2.2 Misplacement

A node participates in the algorithm by exchanging its rank
with a misplaced neighbor in its view. Neighbor j is mis-
placed if and only if

� ai > aj and ri < rj, or
� ai < aj and ri > rj.

3

Fig. 1. Slicing of a population based on a height attribute.

2. Note that the shortest (resp. largest) rank is represented by a cross
at the extreme left (resp. right) of the bottom axis.

3. Note that j is not misplaced in case ai ¼ aj, regardless of values ri
and rj.

ANTA ET AL.: DISTRIBUTED SLICING IN DYNAMIC SYSTEMS 1033

We can characterize these two cases by the predicate
ðaj � aiÞðrj � riÞ < 0.

4.2.3 Global Disorder Measure

In [11], a measure of the relative disorder of sequence
R:sequence with respect to sequence A:sequence was intro-
duced, called the global disorder measure and defined, for any
time t, as

GDMðtÞ ¼ 1

n

X
i

ðai � rðtÞiÞ2:

The minimal value of GDM is 0, which is obtained when
rðtÞi ¼ ai for all nodes i. In this case the attribute-based
index of a node is equal to its random value index, indicat-
ing that random values are ordered.

4.3 Improved Ordering Algorithm

In this algorithm, each node i searches its own view N i for
misplaced neighbors. Then, one of them is chosen to swap
random value with. This process is repeated until there is
no global disorder. In this version of the algorithm, we
provide each node with the capability of measuring disor-
der locally. This leads to a new heuristic for each node to
determine the neighbor to exchange with which decreases
most the disorder.

The proposed technique attempts to decrease the global
disorder in each exchange as much as possible via selecting
the neighbor from the view that minimizes the local disor-
der (or, equivalently, maximizes the order gain) as defined
below. Referring to this disorder measure as a criterion, the
decrease of the global criterion is related to the decrease of
local criteria, similarly to [34].

For a node i to evaluate the gain of exchanging with a
node j of its current viewN i, we define its local disorder mea-
sure (abbreviated LDMi). Let LA:sequencei and LR:sequencei
be the local attribute sequence and the local random
sequence of node i, respectively. These sequences are
computed locally by i using the information N i [fig. Simi-
larly to A:sequence and R:sequence, these are the sequences
of neighbors where each node is ordered according to its
attribute value and random number, respectively. Let, for
any j 2 N i [fig, ‘rjðtÞ and ‘ajðtÞ be the indices of rj and aj
in sequences LR:sequencei and LA:sequencei, respectively,
at time ðtÞ. At any time t, the local disordermeasure of node i
is defined as:

LDMiðtÞ ¼ 1

cþ 1

X
j2N iðtÞ[fig

ð‘ajðtÞ � ‘rjðtÞÞ2:

We denote byGi;jðtþ 1Þ the reduction on this measure that i
obtains after exchanging its random value with node j
between time t and tþ 1. We define it as:

Gi;jðtþ 1Þ ¼ LDMiðtÞ � LDMiðtþ 1Þ;
Gi;jðtþ 1Þ ¼ ½ð‘aiðtÞ � ‘riðtÞÞ2 þ ð‘ajðtÞ � ‘rjðtÞÞ2

� ð‘aiðtÞ � ‘rjðtÞÞ2 � ð‘ajðtÞ � ‘riðtÞÞ2�
1

cþ 1
:

(1)
The heuristic used chooses for node i the misplaced

neighbor j that maximizes Gi;jðtþ 1Þ.

4.3.1 Sampling Uniformly at Random

The algorithm relies on the fact that potential misplaced
nodes are found so that they can swap their random num-
bers thereby increasing order. If the global disorder is high, it
is very likely that any given node hasmisplaced neighbors in
its view to exchange with. Nevertheless, as the system gets
ordered, it becomes more unlikely for a node i to have mis-
placed neighbors. In this stage the way the view is composed
plays a crucial role: if fresh samples from the network are not
available, convergence can be slower than optimal.

Several protocols may be used to provide a random and
dynamic sampling in a P2P system such as Newscast [28],
Cyclon [35] or Lpbcast [36]. They differ mainly by their
closeness to the uniform random sampling of the neighbors
and the way they handle churn. In this paper, we chose to
use a variant of the Cyclon protocol, to construct and update
the views, as it is reportedly the best approach to achieve a
uniform random neighbor set for all nodes [37].

4.3.2 Description of the Algorithm

The algorithm is presented in Fig. 3. The active thread at
node i runs the membership (gossiping) procedure
(recompute� viewðÞi) and the exchange of random values
periodically using the algorithm presented in Fig. 2. Each
node i maintains a view N i containing one entry per neigh-
bor. Node i copies its view, selects the oldest neighbor j of
its view, removes the entry ej of j from the copy of its view,
and finally sends the resulting copy to j. When j receives
the view, j sends its own view back to i discarding possible
pointers to i, and i and j update their view with the one
they receive by firstly keeping the entries they received. In
the original Cyclon a subset 1 � ‘ � c of the view is tossed
uniformly at random to be exchanged. In our version, the
whole view is simply exchanged so that no pseudo-random
generator is used to select a subset of the view. This corre-
sponds to fixing the original subset to the entire view, ‘ ¼ c.

Fig. 2. Gossip-based neighborhood management using a variant of
Cyclon.

1034 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

The algorithm for exchanging random values from node i
starts bymeasuring the ordering that can be gained by swap-
ping with each neighbor (Lines 4-8). Then, i chooses the
neighbor j 2 N i that maximizes gainGi;k for any of its neigh-
bor k. Formally, i finds j 2 N i such that for any k 2 N i,
we have

Gi;jðtþ 1Þ � Gi;kðtþ 1Þ: (2)

Using the definition of Gi;j in Equation (1), Equation (2) is
equivalent to

‘aiðtÞ‘rjðtÞ þ ‘ajðtÞ‘riðtÞ � ‘ajðtÞ‘rjðtÞ �
‘aiðtÞ‘rkðtÞ þ ‘akðtÞ‘riðtÞ � ‘akðtÞ‘rkðtÞ:

(3)

In Fig. 3 of node i, we refer to gainj as the value of
‘aiðtÞ‘rjðtÞ þ ‘ajðtÞ‘riðtÞ � ‘ajðtÞ‘rjðtÞ.

From this point on, i exchanges its random value ri with
the random value rj of node j (Line 11). The passive threads
are executed upon reception of a message. In Fig. 3, when j
receives the random value ri of node i, it sends back its own
random value rj for the exchange to occur (Lines 15-16).
Observe that the attribute value of i is also sent to j, so that j
can check if it is correct to exchange before updating its own
random number (Lines 17-18). Node i does not need to
receive attribute value aj of j, since i already has this infor-
mation in its view and the attribute value of a node never
changes over time.

4.4 Analysis of Slice Misplacement

In mod-JK, as in JK, the current random number ri of a node
i determines the slice si of the node. The objective of both
algorithms is to reduce the global disorder as quickly as
possible. Algorithm mod-JK consists of choosing one neigh-
bor among the possible neighbors that would have been

chosen in JK, plus the GDM of JK has been shown to fit an
exponential decrease. Consequently mod-JK experiences
also an exponential decrease of the global disorder. Eventu-
ally, JK and mod-JK ensure that the disorder has fully disap-
peared. For further information, please refer to [11].

However, the accuracy of the slices heavily depends on
the uniformity of the random value spread between 0 and 1.
It may happen, that the distribution of the random values is
such that some peers decide upon a wrong slice. Even more
problematic is the fact that this situation is unrecoverable
unless a new random value is drawn for all nodes. This
may be considered as an inherent limitation of the
approach. For example, consider a system of size 2, where
nodes 1 and 2 have the random values r1 ¼ 0:1, r2 ¼ 0:4. If
we are interested in creating two slices S1 and S2 of equal
size (S1 ¼ S0; 12

and S2 ¼ S1
2; 1

), both nodes will wrongly

believe to belong to the same slice S1, since r1 and r2 belong

to ð0; 12�. This wrong estimate holds even after perfect order-

ing of the random values.
Therefore, an important step is to characterize the inaccu-

racy of slice assignment and how likely it may happen. To
this end, we lower bound the deviation of random values
distribution from the mean, and the probability that this
happen with only two slices. First of all, consider a slice Sp

of length p. In a network of n nodes, the number of nodes
that will fall into this slice is a random variable X with a
binomial distribution with parameters n and p. The stan-

dard deviation of X is therefore
ffi
npð1� pÞp

. This means

that the relative proportional expected difference from the

mean (i.e., np) can be approximated as
ffið1� pÞ=ðnpÞp

,

which is very large if p is small, in fact, goes to infinity as p
tends to zero, although a very large n compensates for this
effect. For a reasonably large network, however, a constant
number of slices results in a relatively large value p and a
very low variance.

To stay with this random variable, the following result
bounds, with high probability, its deviation from its mean .

Lemma 4.1. For any b 2 ð0; 1�, a slice Sp of length p 2 ð0; 1� has
a number of peersX 2 ½ð1� bÞnp; ð1þ bÞnp� with probability
at least 1� � as long as p � 3

b2n
lnð2=�Þ.

Proof. The way nodes choose their random number is like
drawing n times, with replacement and independently
uniformly at random, a value in the interval ð0; 1�. Let
X1; . . . ; Xn be the n corresponding independent identi-
cally distributed random variables such that:

Xi ¼ 1 if the value drawn by node i belongs to Sp and

Xi ¼ 0 otherwise.

�
We denote X ¼Pn

i¼1 Xi the number of elements of
interval Sp drawn among the n drawings. The expecta-
tion of X is np. From now on we compute the probability
that a bounded portion of the expected elements are
misplaced. Two Chernoff bounds [38] give:

Pr½X � ð1þ bÞnp� � e�
b2np
3

Pr½X � ð1� bÞnp� � e�
b2np
2

)

) Pr½jX � npj � bnp� � 2e�
b2np
3 ;

Fig. 3. Dynamic ordering by exchange of random values.

ANTA ET AL.: DISTRIBUTED SLICING IN DYNAMIC SYSTEMS 1035

with 0 < b � 1. That is, the probability that more than
(b time the number expected) elements are misplaced

regarding to interval Sp is bounded by 2e�
b2np
3 . We want

this to be at most �. This yields the result. tu
To measure the effect discussed above during the simula-

tion experiments, we introduce the slice disorder measure
(SDM) as the sum over all nodes i of the distance between
the slice i actually belongs to and the slice i believes it
belongs to. For example (in the case where all slices have
the same size), if node i belongs to the first slice (according
to its attribute value) while it thinks it belongs to the third
slice (according to its rank estimate) then the distance for
node i is j1� 3j ¼ 2. Formally, for any node i, let Sui;li be the

actual correct slice of node i and let Sûi;l̂i
ðtÞ be the slice i esti-

mates as its slice at time t. The slice disorder measure is
defined as:

SDMðtÞ ¼
X
i

1

ui � li

ui þ li
2

� ûi þ l̂i
2

�����
�����:

SDMðtÞ is minimal (equals 0) if for all nodes i, we have
Sûi;l̂i

ðtÞ ¼ Sui;li .

In fact, it is simple to show that, in general, the proba-
bility of dividing n peers into two slices of the same size

is less than
ffiffiffiffiffiffiffiffiffiffiffi
2=np

p
. This value is very small even for

moderate values of n. Hence, it is highly possible that the
random number distribution does not lead to a perfect
division into slices.

4.5 Simulation Results

We present simulation results using PeerSim [39], using a
simplified cycle-based simulation model, where all mes-
sages exchanges are atomic, so messages never overlap.
First, we compare the performance of the two algorithms:
JK and mod-JK. Second, we study the impact of concurrency
that is ignored by the cycle-based simulations.

4.5.1 Performance Comparison

We compare the time taken by these algorithms to sort the
random values according to the attribute values (i.e., the
node with the jth largest attribute value of the system value
obtains the jth random value). In order to evaluate the con-
vergence speed of each algorithm, we use the slice disorder
measure as defined in Section 4.4.

We simulated 104 participants in 100 equally sized slices
(when unspecified), each with a view size c ¼ 20. Fig. 4a
illustrates the difference between the global disorder mea-
sure and the slice disorder measure while Fig. 4b presents
the evolution of the slice disorder measure over time for JK,
and mod-JK.

Fig. 4a shows the different values to which the global
disorder measure and the slice disorder measure converge.
When values are sufficiently large, the GDM and SDM seem
tightly related: if GDM increases then SDM increases too.
Conversely, there is a significant difference between the
GDM and SDM when the values are relatively low: the
GDM reaches 0 while the SDM is lower bounded by a posi-
tive value. This is because the algorithm does lead to a

totally ordered set of nodes, while it still does not associate
each node with its correct slice. Consequently the GDM is
not sufficient to rightly estimate the performance of our
algorithms. Note that the different scales of the axes of
Fig. 4a do not change the result but helps visualizing the rel-
atively high value of the SDM at which the GDM reaches 0.

Fig. 4b shows the slice disorder measure to compare the
convergence speed of our algorithm to that of JK with
10 equally sized slices. Our algorithm converges signifi-
cantly faster than JK. Note that none of the algorithm
reaches zero SDM, since they are both based on the same
idea of sorting randomly generated values. Besides, since
they both used an identical set of randomly generated val-
ues, both converge to the same SDM.

4.5.2 Remark

For the sake of fairness JK and mod-JK are compared
using the same underlying view management protocol in
our simulation: the variant of Cyclon. Nevertheless, we
simulated JK on top of Newscast as it appeared in [11]
(running a single cycle of Newscast in each cycle of JK, as
for Cyclon and its variant in mod-JK). As expected, the
convergence speed of JK was even slower due to the dif-
ference between the clustering coefficient of the commu-
nication graph obtained by Newscast and Cyclon,
respectively [37]. The comparison of the underlying view
management protocols both in terms of randomness and
fault-tolerance is out of the scope of this paper.

4.6 Concurrency

The simulations are cycle-based and at each cycle an algo-
rithm step is done atomically so that no other execution is
concurrent. More precisely, the algorithms are simulated
such that in each cycle, each node updates its view before
sending its random value or its attribute value. Given this
implementation, the cycle-based simulator does not allow
us to realistically simulate concurrency, and a drawback is
that view is up-to-date when a message is sent. In the fol-
lowing we artificially introduce concurrency (so that view
might be out-of-date) into the simulator and show that it
has only a slight impact on the convergence speed.

Adding concurrency raises some realistic problems due to
the use of non-atomic push-pull [36] in each message
exchange. That is, concurrency might lead to other problems
because of the potential staleness of views: unsuccessful
swaps due to useless messages. Technically, the view of node
imight indicate that j has a random value rwhile this value is
no longer up-to-date. This happens if i has lastly updated its
view before j swapped its random value with another j0.
Moreover, due to asynchrony, it could happen that by the
time a message is received this message has become useless.
Assume that node i sends its random value ri to j in order to
obtain rj at time t and j receives it by time tþ d. With no loss
of generality assume ri > rj. Then if j swaps its random
value with j0 such that r0j > ri between time t and tþ d, then

the message of i becomes useless and the expected swap does
not occur (we call this an unsuccessful swap).

Fig. 4d indicates the impact of concurrent message
exchange on the convergence speed while Fig. 4c shows
the amount of useless messages that are sent. Now, we

1036 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

explain how the concurrency is simulated. Let the overlap-
ping messages be a set of messages that mutually overlap:
it exists, for any couple of overlapping messages, at least
one instant at which they are both in-transit. For each
algorithm we simulated (i) full concurrency: in a given
cycle, all messages are overlapping messages; and (ii) half
concurrency: in a given cycle, each message is an overlap-
ping message with probability 1

2. Generally, we see that
increasing the concurrency increases the number of use-
less messages. Moreover, in the modified version of JK,
more messages are ignored than in the original JK algo-
rithm. This is due to the fact that some nodes (the most
misplaced ones) are more likely targeted which increases
the number of concurrent messages arriving at the same
nodes. Since a node i ignored more likely a message
when it receives more messages during the same cycle, it
comes out that concentrating message sending at some
targets increases the number of useless messages.

Fig. 4d compares the convergence speed under full con-
currency and no concurrency. We omit the curve of half-
concurrency since it would have been similar to the two
other curves. Full-concurrency impacts on the convergence
speed very slightly.

5 DYNAMIC RANKING BY SAMPLING OF ATTRIBUTE

VALUES

In this section we propose an alternative algorithm for the
distributed slicing problem. This algorithm circumvents
some of the problems identified in the previous approach
by continuously ranking nodes based on observing attribute
value information. Random values no longer play a role, so
non-perfect uniformity in the random value distribution is
no longer a problem. Besides, this algorithm is not sensitive
to churn even if it is correlated with attribute values.

In the remaining part of the paper we refer to this new
algorithm as the ranking algorithm while referring to JK
and mod-JK as the ordering algorithms. Here, we elabo-
rate on the drawbacks arising from the ordering algo-
rithms relying on the use of random values that are
solved by the ranking approach.

Impact of attribute correlated with dynamics. As already
mentioned, the ordering algorithms rely on the fact that
random values are uniformly distributed. However, if the
attribute values are not constant but correlated with the
dynamic behavior of the system, the distribution of random
values may change from uniform to skewed quickly. For

Fig. 4. Comparison of the original JK and our modified JK algorithms in terms of slice disorder measure and the amount of useless received mes-
sages due to concurrency.

ANTA ET AL.: DISTRIBUTED SLICING IN DYNAMIC SYSTEMS 1037

instance, assume that each node maintains an attribute
value that represents its own lifetime. Although the algo-
rithm is able to quickly sort random values, so nodes with
small lifetime will obtain the small random values, it is
more likely that these nodes leave the system sooner than
other nodes. This results in a higher concentration of high
random values and a large population of the nodes wrongly
estimate themselves as being part of the higher slices.

Inaccurate slice assignments. As discussed in previous sec-
tions in detail, slice assignments will typically be imperfect
even when the random values are perfectly ordered. Since
the ranking approach does not rely on ordering random
nodes, this problem is not raised: the algorithm guarantees
eventually perfect assignment in a static environment.

Concurrency side-effect. In the previous ordering algo-
rithms, a non negligible amount of messages are sent unnec-
essarily. The concurrency of messages has a drastic effect on
the number of useless messages as shown previously, slow-
ing down convergence. In the ranking algorithm concur-
rency has no impact on convergence speed because all
received messages are taken in account. This is because the
information encapsulated in a message (the attribute value
of a node) is guaranteed to be up to date, as long as the attri-
bute values are constant, or at least change slowly.

5.1 Ranking Algorithm Specification

The pseudocode of the ranking algorithm is presented in
Fig. 5. As opposed to the ordering algorithm of the previous
section, the ranking algorithm does not assign random ini-
tial unalterable values as candidate ranks. Instead, the rank-
ing algorithm improves its rank estimate each time a new
message is received.

The ranking algorithm works as follows. Periodically
each node i updates its view N i following an underlying

protocol that provides a uniform random sample (Line 3);
later, we simulate the algorithm using the variant of
Cyclon protocol presented in Section 4.3.2. Node i com-
putes its rank estimate (and hence its slice) by comparing
the attribute value of its neighbors to its own attribute
value. This estimate is set to the ratio of the number of
nodes with a lower attribute value that i has seen over the
total number of nodes i has seen (Line 15). Node i looks at
the normalized rank estimate of all its neighbors. Then, i
selects the node j1 closest to a slice boundary (according
to the rank estimates of its neighbors). Node i selects also
a random neighbor j2 among its view (Line 12). When
those two nodes are selected, i sends an update message,
denoted by a flag UPD, to j1 and j2 containing its attribute
value (Line 13-14).

The reason why a node close to the slice boundary is
selected as one of the contacts is that such nodes need more
samples to accurately determine which slice they belong to
(Section 5.2 shows this point). This technique introduces a
bias towards them, so they receive more messages.

Upon reception of a message from node i, the passive
threads of j1 and j2 are activated so that j1 and j2 compute
their new rank estimate rj1 and rj2 . The estimate of the slice

a node belongs to, follows the computation of the rank
estimate. Messages are not replied, communication is one-
way, resulting in identical message complexity to JK and
mod-JK.

5.2 Theoretical Analysis

The following Theorem shows a lower bound on the proba-
bility for a node i to accurately estimate the slice it belongs
to. This probability depends not only on the number of attri-
bute exchanges but also on the rank estimate of i.

Theorem 5.1. Let p be the normalized rank of i and let p̂ be its esti-
mate. For node i to exactly estimate its slice with confidence coef-
ficient of 100ð1� aÞ%, the number of messages imust receive is:

Za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þp
d

 !2

;

where d is the distance between the rank estimate of i and the
closest slice boundary, and Za

2
represents the endpoints of the

confidence interval.

Proof. Each time a node receives a message, it checks
whether or not the attribute value is larger or lower than
its own. Let X1; . . . ; Xk be k ðk > 0Þ independent identi-
cally distributed random variables described as follows.

Xj ¼ 1 with probability i
n ¼ p (indicating that the attri-

bute value is lower) and j 2 f1; . . . ; kg, otherwise Xj ¼ 0
(indicating the attribute value is larger). By the central
limit theorem, we assume k > 30 and we approximate

the distribution of X ¼Pk
j¼1 Xj as the normal distribu-

tion. We estimateX by X̂ ¼Pk
j¼1 X̂j and p by p̂ ¼ X̂

k .

We want a confidence coefficient with value 1� a. Let
F be the standard normal distribution function, and let

Za
2
be F�1ð1� a

2Þ. Now, by the Wald large-sample normal

test in the binomial case, where the standard deviation of

p̂ is sðp̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

p ffiffi
k

p , we have:

Fig. 5. Dynamic ranking by exchange of attribute values.

1038 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

p̂� p

sðp̂Þ
����

���� � Za
2

p̂� Za
2
sðp̂Þ � p � p̂þ Za

2
sðp̂Þ:

Next, assume that p̂ falls into the slice Sl;u, with l and u
its lower and upper boundaries, respectively. Then, as

long as p̂� Za
2

ffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

k

q
> l and p̂þ Za

2

ffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

k

q
� u, the slice

estimate is exact with a confidence coefficient of
100ð1� aÞ%. Let d ¼ minðp̂� l; u� p̂Þ, thenwe need

d � Za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

k

r
;

k � Za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þp
d

 !2

:

tu
To conclude, under reasonable assumptions every node

estimates its slice with confidence coefficient 100ð1� aÞ%,
after a finite number of message receipts. Moreover a node
closer to the slice boundary needs more messages than a
node far from the boundary.

5.3 Simulation Results

This section evaluates the ranking algorithm by focusing
on three different aspects. First, the performance of the
ranking algorithm is compared to the performance of the
ordering algorithm4 in a large-scale system where the dis-
tribution of attribute values does not vary over time. Sec-
ond, we investigate if sufficient uniformity is achievable
in reality using a dedicated protocol. Third, the ranking
algorithm and ordering algorithm are compared in a
dynamic system where the distribution of attribute values
may change. Finally, a sliding window technique is given
to prevent the SDM from increasing.

For this purpose, we ran two simulations, one for each
algorithms. The system contains (initially) 104 nodes and
each view contains 10 uniformly drawn random nodes and
is updated in each cycle. The number of slices is 100, and
we present the evolution of the slice disorder measure
over time.

5.3.1 Performance Comparison in the Static Case

Fig. 6a compares the ranking algorithm to the mod-JK algo-
rithm while the distribution of attribute values do not
change over time (varying distribution is simulated below).

The difference between the mod-JK algorithm and the
ranking algorithm indicates that the ranking algorithm
gives a more precise result (in terms of node to
slice assignments) than the mod-JK algorithm. More
importantly, the slice disorder measure obtained by the
mod-JK algorithm is lower bounded while the one of
the ranking algorithm is not. Consequently, this simula-
tion shows that the mod-JK algorithm might fail in slicing
the system while the ranking algorithm keeps improving
its accuracy over time as the convergence statement of
Theorem 5.1 confirmed.

5.3.2 Feasibility of the Ranking Algorithm

Fig. 6b shows that the ranking algorithm does not need arti-
ficial uniform drawing of neighbors. Indeed, an underlying
view management protocol might lead to similar perfor-
mance results. In the presented simulation we used an artifi-
cial protocol, drawing neighbors randomly at uniform in
each cycle of the algorithm execution, and the variant of the
Cyclon view management protocol presented above. Those
underlying protocols are distinguished on the figure using
terms “uniform” (for the former one) and “views” (for the
latter one). As said previously, the Cyclon protocol [35] con-
sists of exchanging views between neighbors such that the
communication graph produced shares similarities with a
random graph. This figure shows that both cases give very
similar results. The SDM legend is on the right-handed ver-
tical axis while the left-handed vertical axis indicates what
percentage the SDM difference represents over the total
SDM value. At any time during the simulation (and for both
type of algorithms) its value remains within plus or minus
7 percent. The two SDM curves of the ranking algorithm
almost overlap. Consequently, the ranking algorithm and
the variant of Cyclon presented in Section 4.3.2 achieve very
similar result.

To conclude, the variant of Cyclon algorithm presented
in the previous section can be easily used with the ranking
algorithm to provide the shuffling of views. More generally,
an underlying distributed protocol that shuffles the view
among nodes may provide nearly-optimal results.

5.3.3 Performance Comparison in the Dynamic Case

In Fig. 6c each of the two curves represents the slice disor-
der measure obtained over time using the mod-JK algo-
rithm and the ranking algorithm respectively. We simulate
the churn such that 0.1 percent of nodes leave and 0.1 per-
cent of the nodes join in each cycle during the 200 first
cycles. We observe how the SDM converges. The churn is
reasonably and pessimistically tuned compared to recent
experimental evaluations [8] of the session duration in three
well-known P2P systems.5

The distribution of the churn is correlated to the attribute
value of the nodes. The leaving nodes are the nodes with
the lowest attribute values while the entering nodes have
higher attribute values than all nodes already in the system.
The parameter choices are motivated by the need of simu-
lating a system in which the attribute value corresponds to
the (fixed) session duration of nodes, for example.

The churn introduces a significant disorder in the system
which counters the fast decrease. When, the churn stops,
the ranking algorithm readapts well the slice assignments:
the SDM starts decreasing again. However, in the mod-JK
algorithm, the convergence of SDM gets stuck. This leads to
a poor slice assignment accuracy.

In Fig. 6d, each of the two curves represent the slice dis-
order measure obtained over time using the mod-JK algo-
rithm, the ranking algorithm, and a modified version of the

4. We omit comparison with JK since the performance obtained with
mod-JK are either similar or better.

5. In [8], roughly all nodes have left the system after one day while
there are still 50 percent of nodes after 25 minutes. In our case, assum-
ing that in average a cycle lasts one second would lead to more than
54 percent of leave in 9 minutes.

ANTA ET AL.: DISTRIBUTED SLICING IN DYNAMIC SYSTEMS 1039

ranking algorithm using attribute values recorded in a slid-
ing-window, respectively. (The simulation obtained using
sliding windows is described in the next Section.) The
churn is diminished andmademore regular than in the pre-
vious simulation such that 0.1 percent of nodes leave and
0.1 percent of nodes join every 10 cycles.

The curves fits a fast decrease (superlinear in the number
of cycles) at the beginning of the simulation. At first cycles,
the ordering gain is significant making the impact of churn
negligible. This phenomenon is due to the fact that SDM
decreases rapidly when the system is fully disordered. Later
on, however, the decrease slope diminishes and the churn
effect reduces the amount of nodes with a low attribute
value while increasing the amount of nodes with a large
attribute value. This unbalance leads to a messy slice assign-
ment, that is, each node must quickly find its new slice to
prevent the SDM from increasing. In the mod-JK algorithm
the SDM starts increasing from cycle 120. Conversely, with
the ranking algorithm the SDM starts increasing not earlier
than at cycle 730. Moreover the increase slope is much
larger in the former algorithm than in the latter one.

Even though the performance of the ranking algorithm is
much better, its adaptiveness to churn is not surprising.

Unlike the mod-JK algorithm, the ranking one keeps re-esti-
mating the rank of each node depending on the attribute
values present in the system. Since the churn increases
the attribute values present in the system, nodes tend to
receive more messages with higher attribute values and less
messages with lower attribute values, which turns out to
keep the SDM low, despite churn. Further on, we propose a
solution based on sliding-window technique to limit the
increase of the SDM in the ranking algorithm.

To conclude, the results show that when the churn is
related to the attribute (e.g., attribute represents the session
duration, uptime of a node), then the ranking algorithm is
better suited than the mod-JK algorithm.

5.3.4 Sliding-Window for Limiting the SDM Increase

In Fig. 6d, the “sliding-window” curve presents a slightly
modified version of the ranking algorithm that encompasses
SDM increase due to churn correlated to attribute values.
Here, we present this enrichment.

In Section 5, the ranking algorithm specifies that each
node takes into account all received messages. More
precisely, upon reception of a new message each node i re-
computes immediately its rank estimate and the slice it

Fig. 6. Evaluation of the mod-JK and the ranking protocols with uniform and Cyclon-like sampling, and under continuous and burst of attribute-
correlated churn.

1040 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 4, APRIL 2016

thinks it belongs to without remembering the attribute val-
ues it has seen. Consequently the messages received long-
time ago have as much importance as the fresh messages in
the estimate of i. The drawback, as it appeared in Fig. 6d of
Section 4.5, is that if the attribute values are correlated to
churn, then the precision of the algorithm might diminish.

To cope with this issue, the previous algorithm can be
easily enriched in the following way. Upon reception of a
message, each node i records an information about the attri-
bute value received in a fixed-size ordered set of values. Say
this set is a first-in first-out buffer such that only the most
recent values remain. Right after having recorded this infor-
mation, node i can re-compute its rank estimate and its slice
estimate based on the most relevant piece of information
(having discarded the irrelevant piece). Consequently, the
estimate would rely only on fresh attribute values encoun-
tered so that the algorithm would be more tolerant to
changes (e.g., dynamics or non-uniform evolution of attri-
bute values). Of course, since the analysis (cf. Section 5.2)
shows that nodes close to the slice boundary require a large
number of attribute values for estimating precisely their
estimates, it would be unaffordable to record all these last
attribute values encountered due to space limitation.

Actually, the only necessary relevant information of a
message is simply whether it contains a lower attribute
value than the attribute value of i, or not. Consequently, a
single bit per message would be sufficient to record the nec-
essary information (e.g., adding a 1 meaning that the attri-
bute value is lower, and 0 otherwise). Thus, even though a

node i would require 104 messages to rightly estimate its
slice (with high probability), node i simply needs to allocate

an array of size 104=ð8 � 1;000Þ ¼ 1; 25 kB.
As expected, Fig. 6d shows that the sliding-window

method applied to the ranking algorithm prevents its SDM
from increasing. Consequently, at some point in time, the
resulting slice assignment may become even more accurate.

6 CONCLUSION

Peer to peer systems may now be turned into general frame-
works on top of which several applications might cohabit.
To this end, allocating resources to applications, while
resources are heterogeneously spread over the system,
require specific algorithms to partition the network in a rele-
vant way. The sorting algorithm proposed in [11] provided
a first attempt to “slice” the network, taking into account
the potential heterogeneity of nodes. This algorithm relies
on each node drawing a random value uniformly and swap-
ping continuously those random values, with candidate
nodes, so that the order between attributes values (reflecting
the capabilities of nodes) and random ones match.

In this paper, we first proposed an improvement over the
initial algorithm resulting in the faster mod-JK algorithm.
This improvement comes from a judicious choice of candi-
date nodes to swap values. Each node makes this choice
depending on the potential decrease of the disorder mea-
sure it can compute locally.

Our second contribution is the definition of the slice dis-
order measure. The slice disorder measure evaluates how
nodes wrongly estimate the slice they belong to. We showed
that the proposed global disorder measure cannot indicate

whether nodes found their slice. That is, the slice disorder
measure is necessary to show that an algorithm solves the
distributed slicing problem.

Using the slice disorder measure, we identified two
issues related to the use of static random values. The first
one refers to the fact that slice assignment heavily depends
on the degree of uniformity of the initial random value. In
particular, we showed that ordering algorithms do not con-
verge to a sliced networks. The second is related to the fact
that once sorted along one attribute axis, the churn (or fail-
ures) might be correlated to the attribute, therefore leading
to a unrecoverable skewed distribution of the random
values. This phenomenon results in a wrong slice assign-
ment despite the system seems to be rightly ordered.

Last but not least, we provided a ranking algorithm that
accuratelymaintains slices of the system even in the presence
of churn. This algorithm minimizes the effect of correlated
churn on slice disorder and recovers efficiently after a period
of correlated churn. For this purpose, nodes continuously re-
estimate their rank relatively to other nodes based on their
sampling of the network. The convergence speedup of the
first algorithm and the accuracy of the second algorithm are
proved through theoretical analysis and simulations.

ACKNOWLEDGMENTS

This work has been funded by the Regional Government
of Madrid (CM) under project Cloud4BigData (S2013/
ICE-2894) cofunded by FSE & FEDER and by the Spanish
Research Council (MICCIN) under project BigDataPaaS
(TIN2013-46883). NICTA is funded by the Australian
Government through the Department of Communications
and the Australian Research Council through the ICT
Centre of Excellence Program. A preliminary version of
this work appeared in the proceedings of ICDCS 2007 [1].
The additional material proves the convergence of the
Ranking algorithm, proves the inaccuracy of the mod-JK
algorithms and presents an extended related work.

REFERENCES

[1] A. Fern�andez Anta, V. Gramoli, E. Jimenez, A.-M. Kermarrec,
and M. Raynal, “Distributed slicing in dynamic systems,” in
Proc. 27th IEEE Int. Conf. Distrib. Comput. Syst., Jun. 2007, pp.
66–66.

[2] S. A. Baset and H. Schulzrinne, “An analysis of the Skype peer-to-
peer Internet telephony protocol,” in Proc. 25th IEEE Conf. Comput.
Commun., Apr. 2006, pp. 1–11.

[3] P. Dhungel, K. W. Ross, M. Steiner, Y. Tian, and X. Hei, “Xunlei:
Peer-assisted download acceleration on a massive scale,” in Proc.
13th Int. Conf. Passive Active Meas., 2012, pp. 231–241.

[4] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak,
“Operating system support for planetary-scale network serv-
ices,” in Proc. Symp. Netw. Syst. Des. Implementation, 2004, pp.
253–266.

[5] F. Wang, Y. Xiong, and J. Liu, “mTreebone: A collaborative tree-
mesh overlay network for multicast video streaming,” IEEE Trans.
Parallel Distrib. Syst., vol. 21, no. 3, pp. 379–392, Mar. 2010.

[6] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “A measurement
study of peer-to-peer file sharing systems,” in Proc. Multimedia
Comput. Netw., 2002, vol. 4673, pp. 156–170.

[7] R. Bhagwan, S. Savage, and G. Voelker, “Understanding
availability,” in Proc. 2nd Int. Workshop Peer-to-Peer Syst., 2003,
pp. 256–267.

[8] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proc. Internet Meas. Conf., 2006, pp. 189–202.

ANTA ET AL.: DISTRIBUTED SLICING IN DYNAMIC SYSTEMS 1041

Anne-Marie Kermarrec is a senior researcher
at Inria, France. She leads a 20 member
research team on dynamic large-scale distrib-
uted systems. Before joining Inria in 2004, she
was with Microsoft Research from 2000-2004,
and at Vrije Universiteit in the Netherlands in
1997. She was the principal investigator of an
ERC-SG project and is currently the principal
investigator of a Google Focused Award, in
collaboration with EPFL. She has been in the
ACM Software Systems Award committee

since 2009 and chaired it in 2012 and 2014. She is also the vice-chair
in the ACM EuroSys steering committee. Finally, she received the
2011 Monpetit Award from the French Academy of Science and she
is a member of the Academy of Europe since 2013. Her research
interests include distributed systems, epidemic algorithms, social and
peer-to-peer networks, and recommendation systems.

Michel Raynal is a professor of computer
science at the University of Rennes, France.
His main research interests concern distributed
algorithms, distributed computability, and the
fundations of distributed computing. His last two
books Concurrent Programming: Algorithms,
Principles and Foundations (ISBN 978-3-642-
32026-2), and Distributed Algorithms for Mes-
sage-passing Systems (ISBN: 978-3-642-38122-
5) have been published by Springer in 2013.
Since 2010, he has been a senior member of the

prestigious “Institut Universitaire de France.” He received the Interna-
tional SIROCCO 2015 Award “Innovation in Distributed Computing.”

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ANTA ET AL.: DISTRIBUTED SLICING IN DYNAMIC SYSTEMS 1043

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

