Modelling D2D Communications in Cellular Access Networks via Coupled Processors

Christian Vitale1,2, Vincenzo Mancuso1,2, Gianluca Rizzo3
1IMDEA Networks Institute, 2Universidad Carlos III de Madrid, 3HES SO Valais

Abstract

Also in cellular networks, D2D communications provide numerous advantages. Nevertheless, modelling D2D systems remains a complex and unsolved task. In this work, we present the first analytical study on D2D system performance. Our approach models interdependencies among D2D and cellular transmitters in details and achieves a conservative estimation of the stability region of D2D systems, as well as evaluates the effects of D2D transmissions on cellular users. Furthermore, the proposed approach can easily trade-off performances for less complexity in a realistic application, i.e., in a proportional fairness optimization.

D2D transmissions, interesting but challenging

We study the D2D in-band underlay scheduling case, where cellular and D2D transmitters share the same resources [1]. Transmissions are strongly coupled each other by mutual interference.

A model to evaluate D2D performance is missing

Goals:
• optimizations of D2D operations;
• efficient coexistence of cellular and D2D users.

Previous work:
• D2D system are evaluated by simulations, assuming the system in saturation, i.e., all transmitters have always traffic to transmit;
• and assuming simple and underperforming scheduling.

What’s missing:
• full knowledge of D2D achievable rates (stability region);
• performance bounds.

System Model and Analysis

We model the D2D system through a queueing system with Coupled Processors (CP) [2].

In D2D, interferences (and throughputs) are univocally determined by the set of simultaneous transmitters.

With CP, the service rate of queues is univocally determined by the set of active queues.

Our method: untangle the net of interdependencies. Model interdependencies through feed forward networks [3].

• CP queues are mapped onto GPS nodes (same arrivals);
• when active, GPS nodes propagate traffic to following nodes, absorbing capacity;
• at each epoch \(t \), GPS nodes serve traffic at slower rate than the corresponding CP node (conservative);
• one network per sorting.

Reducing the complexity: Proportional Fairness

The CP analysis can be simplified depending on the goal.

Optimization can be performed on a small set of sortings carefully chosen:
• Exploiting stability region fairness improves considerably

Numerical Evaluation

Stability region evaluation: Analytical vs. Packet-Level Simulation

Analytical results model accurately the D2D stability region. Model slightly underestimates cellular throughputs (Max. diff: 11.18%).

References