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The basic hypothesis is that past dynamics on social networks -Absolute mean error -Spearman’s rank correlation
can be used to predict the most influential users in a future. N coefficient
In this work, propagation dynamics on social networks are S ID 2
Ny .20 . : | D 6> D
studied in order to identify the most influential users. absErr— =1 p=1— ( - )
We use the activity in a social network during a period to predict N NiN“—1
the influential users in a different period. S— Metric P ——— T
“Tili. T T

Methodology R Degree 0.1324  248.82
For this purpose, diffusion data has been collected during 4 A R I Betwenness 0.1346  266.42
weeks from a microblogging OSN (online social network) called Closeness 0.0935  245.43
Tumblr. Then, the propagation graph has been built and studied e I S S B e T P gy o u-PCl 0.1104  246.32
using the first 2 weeks data (period T,). Subsequently, this graph PageRank 0.0935  251.03
has been used to predict the influencers during the last 2 weeks 0 HITS (auth) 0.1004  267.33
(period T,). A ranking of influential nodes is obtained for T,, set — T T T HITS (hub) 0.1584  240.87
as the ground truth. The aim is to predict this ranking using the g Sl Eff. Degree DS |  2denil
data from T,. - F 288 ¢ 5 8 5 4 EQOAED 0.1515  234.84
-Based on the average spread of users' posts, rankings obtained = 5 i T DO | 2
techniques include classical centrality measures. used in the
techniques include classical centrality measures used in the Partial (top) Rank]ng Results
literature, the T, ranking itself, and new alternatives based on | ] ( R k) ] (f)|

: : : : top, nodes(refRank)Ntop,_nodes
effective degree using local (network) information. _ m m
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“Influence (definition) 1 =
A user is more influential than other when the former has a
greater average propagation-cascade size. 08 1 3

*We build a weighted directed graph G(V,E) from the union
of all cascades caused by the messages posted.
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*A real value is assigned to each vertex in V, which is 0s <
derived from its activity and its properties in the cascades ,
graph. . ol |
-Classic Centrality Metrics: = degee S wPOl W T [
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Degree Betweeness Closeness Ol.(] 0.|1 0|.2 0|.3 0|.4 0.|5 Ol.O 0.|1 0|.2 0|.3 0.|4 0|.5
u-PCI PageRank HITS (auth & hub) Petop .
-Our metrics: *Whilst all methods perform
‘Effective degree . similarly when considering °
K,= 2. weight ((V,W)) whole global ranking,
o . WEN o V] differences among them T«;D
'EgO'Addltlve Effective Degree appear when ranking the top ° .
A A influencers. For those, in
EgoAED , =k, WE; ) K., general, the methods proposed
here outperform the classical
"this metric has no weighted version. centra[ity measures. o = pegeflaian efDogre
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