
1

Mobile Network Resource Optimization
under Imperfect Prediction

Nicola Bui12

1IMDEA Networks Institute, Leganes (Madrid), Spain
2UC3M, Leganes (Madrid), Spain

Abstract—A highly interesting trend in mobile network opti-
mization is to exploit knowledge of future network capacity to
allow mobile terminals to prefetch data when signal quality is
high and to refrain from communication when signal quality is
low. While this approach offers remarkable benefits, it relies on
the availability of a reliable forecast of system conditions. This
paper focuses on the reliability of simple prediction techniques
and their impact on resource allocation algorithms. In addition,
we propose a resource allocation technique that is robust to
prediction uncertainties. The algorithm combines autoregressive
filtering and statistical models for short, medium, and long term
forecasting. We validate our approach by means of an extensive
simulation campaign for different network scenarios. We show
that our solution performs close to an omniscient optimizer as
well as the simple solution that always maintains a full buffer in
terms of prefetching data before it is needed, while at the same
time using 20% less network resources than the simple full buffer

strategy.

I. INTRODUCTION

“Every form of behavior is compatible with determinism.
One dynamic system might fall into a basin of attraction and
wind up at a fixed point, whereas another exhibits chaotic
behavior indefinitely, but both are completely determinis-
tic” [1]. In his provocative essay, Ted Chiang is suggesting
that unpredictability is just a consequence of the limitedness
of human comprehension. While we do not assume that mobile
networks are deterministic, in this paper we take resource
optimization in mobile networks one step further by exploiting
the predictability of future network capacity.

Mobile networks are increasingly constrained by limited
spectral resources, while at the same time user traffic demands
are growing steadily [2]. Researchers are addressing this
challenge from a variety of perspectives including massive
multiple-input multiple-output communications, heterogeneous
networks combining femto, micro and macro cells, device-to-
device communication, and the concept of exploiting knowl-
edge about user behavior and the network itself for perfor-
mance optimization.

Recent studies [3] highlight how network dynamics [4]
can be understood, predicted and linked to human mobility
patterns [5]. This ability to predict user and network behavior
allows to optimize resource allocation [6], [7]. As such, it is a
highly interesting approach to increase the efficiency of mobile
networks and deal with future traffic growth.

In this paper, we propose a resource allocation algorithm
for mobile networks that leverages link quality prediction and

prediction reliability. We first design an optimal resource allo-
cation algorithm that assumes perfect knowledge of the future,
as well as a general user capacity forecasting model for mobile
networks. We then combine the two to obtain an iterative
algorithm achieving near-optimal performance by taking into
account the forecast reliability. While some prior work dealt
with prediction-based optimization and uncertainty [8]–[10],
our approach is the first to combine multi-scale forecasting
with a resource allocation scheme that accounts for imperfect
throughput prediction in mobile networks.

The rest of the paper is structured as follows: Section II
provides a brief summary of the related work. Section III
describes the system model and assumptions. In Section IV
we detail the omniscient resource allocation algorithm. Sec-
tion V analyzes future prediction feasibility and its limits:
Section V-A gives details about the filtering technique used
to obtain short term predictions and Section V-B provides
the statistical tools for medium to long term forecasting.
Section VI provides our solution for resource allocation under
imperfect predictions and the performance of this algorithm
is analyzed in Section VII. Section VIII provides our final
considerations and next objectives.

II. RELATED WORK

Several recent papers, for example [6] and [7], optimize
mobile video delivery by exploiting future knowledge in order
to save both energy and cost. The main idea is that it is better
to communicate when the signal quality is good and refrain
from doing so when the signal quality is bad: better signal
quality results in higher spectral efficiency and less resources
have to be used to send the same amount of data.

This paper starts from a more general formulation of the
problem. We do not limit our approach to video delivery but
address data exchange in general. Also, we relax the assump-
tion of perfect knowledge of future system conditions, taking
into consideration prediction techniques and their reliability.
(Note that in this paper we do not address content prediction
and we assume it is known in advance what content the user
will be interested in [11].)

Network capacity prediction has been studied, for exam-
ple, in [12], [13] and [14]. These papers evaluate ARMA
and GARCH filtering techniques that account for sequences
which random variables have the same (homoscedastic) or
different (heteroscedastic) finite variance respectively. Other
papers [15], [16] investigate mobility prediction using either

2

Markovian estimators or trajectory-based forecasting tech-
niques.

A further key aspect of our paper is the statistic description
of the per user capacity in mobile networks. To this end, we
modified the models proposed in [4] and [17] to account for
imprecise information.

Finally, a number of papers deal with system optimization
under imperfect state prediction: [8] studies throughput maxi-
mization under imperfect channel knowledge, [10] investigates
the impact of imperfect load prediction in cloud comput-
ing, and [9] studies resource allocation under uncertainties.
However, to the best of our knowledge, our paper is the
first attempt combining actual prediction techniques, statistical
models, and resource allocation into a practical algorithm for
mobile network optimization.

III. SYSTEM MODEL

In this paper we address the downlink from a base station
of a mobile network (eNodeB) to a single receiver (UE). To
simplify the description of the problem, we consider slotted
time with slot duration t and thus the quantities discussed in
the paper are discrete time series. We use i, j, and k to refer
to slot indices. The quantities of interest are:
• Position P = {pi ∈ [0, Pmax], i ∈ N}, where pi is the
distance between UE and eNodeB and Pmax is the coverage
range.
• Active users N = {ni, i ∈ N}, where ni is the number of
active users that are in the same cell as the UE. It reflects the
congestion level of the cell.
• Signal to interference plus noise ratio (SINR) S = {si ∈
R, i ∈ N}, where si is obtained from pi as follows:

si = s0p
−α
i fF . (1)

Here, s0 is a system constant, α is the path loss exponent and
fF is a random multiplicative term to account for fast fading.
• User cell capacity C = {ci ∈ [0, Cmax], i ∈ N}, where ci
represents the average capacity obtained by the user during slot
i. Cmax is the maximum capacity allocable to the UE, given
the specific mobile technology. We compute ci as a function
of si and ni through

ci = c0gc(si, ni), (2)

where c0 is a system constant and gc is a technology dependent
function which models system level variables such scheduling
policy, congestion, spectral efficiency, etc. In the rest of the
paper we consider LTE as the mobile network technology and
we adopt the model in [17], which provides a closed form
expression for fF and gc for a user at a given distance from the
base station, when another n−1 users are uniformly distributed
in the cell area and proportionally fair scheduling is used.
• Receive rate R = {ri ∈ [0, ci], i ∈ N}: this is the rate at
which the base station sends data to the UE in slot i.
• Download requirement D = {di ∈ [0, Dmax], i ∈ N},
where Dmax is the maximum data consumption rate of the
most communication intensive application. In slot i, the user
consumes di bytes of data if they are available. If at any time
the user receives more data than required, the excess can be

stored in a buffer for later use.
• Buffer state B = {bi ∈ [0, BM], i ∈ N}, where bi is the
buffer level and BM is the buffer size in bytes.
• Buffer under-run time U = {ui ∈ [0, 1], i ∈ N} is the
fraction of slot i for which no data was available to satisfy the
download requirements.

The aforementioned quantities are linked as follows:

bi+1 = min{max{bi + ri − di, 0}, BM} (3)

ui =

{

max{di − ri − bi, 0}/di di > 0

0 di = 0
. (4)

The buffer fills (up to the full buffer BM) whenever the
download rate is higher than the consumption rate, ri > di. In
case ri < di, the algorithm empties the buffer and accumulates
buffer under-run time whenever bi + ri < di.

In what follows, we refer to function y = gy(x) as gy.
Similarly, we refer to the probability density function and the
cumulative density function (CDF) of a random variable X as
fX(x) and FX(x) =

∫ x

−∞ fX(y)dy and with µX and σX to
its mean and standard deviation.

IV. RESOURCE ALLOCATION OPTIMIZATION WITH

PERFECT FORECAST

The resource allocation problem aims at finding the optimal
rate time series R that satisfies the download requirements D
by using the available capacity C in the best way. We define
the following objective function:

O = {oi = ri/ci ∈ [0, 1], i ∈ N}, (5)

where oi is the fraction of the available capacity used in slot i
and represents a cost. Note that the same rate r has a different
cost oi > oj if the available capacity ci < cj . We obtain the
following optimization problem:

minimize
R

∑

i

oi

subject to:
∑

i

ui =
∑

i

u∗
i ,

bi ≤ BM , ∀i ∈ N, (6)

where
∑

i u
∗
i is the minimum feasible buffer under-run time.

To minimize this cost function, the base station should send
more data when the available capacity is high and use just the
minimum rate required to avoid a buffer under-run when the
capacity is low.

The solution of Eq. 6 is the optimal resource allocation
strategy R∗ that achieves the minimum buffer under-run time
∑

i u
∗
i at the lowest cost

∑

i o
∗
i . If the sequence C is known

a priori, various offline algorithms can be used to determine
the optimal resource allocation. We use a simple water-
filling algorithm, which is able to achieve optimality using
the following rules: i) define the break-point el as the last
slot for which all previous rates are finalized (i.e., no more
rate can be used in slots up to el) if either bel = BM or
rk = ck, ∀el−1 < k ≤ el; ii) define an optimization window
[el + 1,m], where el is the last break-point slot and the rate

3

allocated in all slots in el−1 < k ≤ el is finalized; iii) starting
from l = 0, el = 0 and m = 1 the algorithm accounts for the
slots in the set {el+1, . . . , el+m} to satisfy the requirements
up to slot el + m; the algorithm chooses a slot if it has the
highest capacity among the unused ones in the set. iv) the
algorithm either increments l, updates el and resets m = 0 if
a break-point is found or increments m. The complete water-
filling algorithm is given in Algorithm 1. sAdd(X, x) adds the
element x to the sorted list X in the correct position, π(ci)
gives the position in C of the element ci and shift(D, uj , j)
is a shift function that recomputes the requirements sequence
D accounting for a buffer under-run event uj in slot j. The
following conditions are used:
• I1 := ∃ el < j ≤ el +m | bj = BM to verify whether a full
buffer state is reached,
• I2 :=

∑el+m

j=el+1 cj − rj = 0 to verify whether all of the
available capacity is used, and
• I3 :=

∑el+m
j=el+1 rj − dj = 0 to verify whether all of the

download requirements have been satisfied.
In the following we prove the optimality of Algorithm 1 and

discuss the behavior of the algorithm when knowledge of the
future capacity is not perfect.

Theorem 1 (Water-Filling Optimality): If R is a solution of
Algorithm 1 with C and D as inputs and achieves a buffer
under-run time

∑

i ui and cost
∑

i oi, then there exists no
other allocation strategy R′ 6= R for C and D that obtains
performance

∑

i u
′
i and

∑

i o
′
i, for which (

∑

i u
′
i <

∑

i ui) ∨
(
∑

i u
′ =

∑

i ui ∧
∑

i <
∑

i oi), i.e., it has either a lower
buffer under-run time or the same buffer under-run time and a
lower cost.

Proof: Theorem 1 can be proven by contradiction on the
following hypotheses:

1)
∑

i u
′
i <

∑

i ui

2) if
∑

i u
′
i =

∑

i ui ⇒
∑

i o
′
i <

∑

i oi

For 1) R cannot satisfy the requirements D in all the slots,
thus

∑

i u
′
i <

∑

i ui ⇒ ∃ j s.t. rj + bj < r′j + b′j < dj .
Since R′ 6= R, they must differ before or on slot j in order
to cause the larger under-run time, because any variation later
than that cannot decrease

∑

i u
′
i. Since R is obtained using

Algorithm 1 and must result in uj > 0, then for all the slots
belonging to the analysis window [el−1 + 1, el], where el =
j the whole available capacity must have been used, which
means R′ cannot use more capacity there to avoid the buffer
under-run. R′ cannot use more capacity before slot el−1 either,
since that would impact in a window already completed (ended
because of condition I1). Thus,

∑

i u
′
i ≥

∑

i ui if the two
strategies are different, which contradicts the first hypothesis.

For 2) it is (R 6= R′)∧(
∑

i ui =
∑

i u
′
i)∧(

∑

i oi <
∑

i o
′
i),

thus the two strategies must differ in at least two slots j, k,
where cj > ck and (rj < r′j) ∧ (rk > r′k). The two slots j, k
cannot belong to the same window, because Algorithm 1 uses
the slots from a sorted list and finishes either with a full buffer
or when the whole capacity has been used. The two slots j, k
cannot belong to different windows either, because if j < k, it
would have been possible to use more capacity earlier in the
allocation which is not possible due to the stopping conditions
of the algorithms, whereas if j > k, a cheaper slot later in the

Algorithm 1 Water-Filling Algorithm (WF)

Input: the knowledge of the future capacity availability C,
the future download requirements D and the initial buffer
level B0.

Output: R = WF(C,D,B0)
l = 0, el = 0 // set the starting point
bel = B0 // set the starting buffer
rel = 0, R = ∅ // set the starting allocation
while |R| < |D| do
m = 1 // set the initial window size
S = ∅ // sorted capacity vector initialization
while ¬I1 ∧ ¬I2 ∧ |R|+m < |D| do
S = sAdd(S, cel+m) // add an element to the sorted
capacity list
i = 1
while i ≤ m ∧ ¬I3 do
rπ(si),old = rπ(si) // store previous allocation
rπ(si) = min{rπ(si) + del+m, chi

, BM − bπ(si)} //
update the temporary allocation
bπ(si)+j = bπ(si)+j + rπ(si) − rπ(si),old, ∀ 1 ≤ j ≤
m− π(si)
i = i+ 1

end while
m = m+ 1 // update the window size

end while
if I1 then
l = l + 1 // increment break-point index
el = j // set last break-point

else
l = l + 1 // increment break-point index
el = el−1 +m // set last break-point
if I2 then
uj = max{dj − rj − bj , 0}/dj
D = shift(D, uj , j) // shift D proportionally to uj

starting from slot j
end if

end if
R = {R, rel−1

, . . . , rel} // update the allocation
end while
return R

sequence could have been used instead of a more expensive
one earlier in the sequence. However, this is not possible due to
either the fact that the more expensive slot must have been used
in order not increase

∑

i ui (stopping condition I2) or because
of the ordered selection of the slots (stopping conditions I1 or
I3). Thus,

∑

i o
′
i ≥

∑

i oi if the two strategies are different,
which contradicts the second hypothesis.

Thus, assuming that an allocation strategy R′ provides a
better solution than that obtained using Algorithm 1 violates
the hypotheses of the theorem, which is therefore proved.

Algorithm 1 will be later used in Section VI in an iterative
procedure to compute resource allocation when the knowledge
of future capacity is inaccurate. The following Section V
provides a general forecast solution and its reliability.

4

V. GENERAL FORECAST MODEL

In this section we propose a general model describing the
forecasting reliability of a system. In particular, we split our
model in three time periods based on the prediction horizon:

The short term period considers the near future and predicts
capacity through time-series filtering techniques [12], [13]. It
is characterized by the reliability time τp, which defines how
many slots of the sequence can be predicted and that we will
discuss in Section V-A.

The medium term period describes the evolution of the
system in terms of available capacity statistics. During this
period one or more network cells can be accounted accord-
ing to the mobility predictor: Markovian predictors [15] can
usually compute the likelihood of visiting a given cell, while
trajectory-based predictors [16] provide a more accurate esti-
mate by computing the actual distribution of the user position
along time.

The long term period provides an overall statistical eval-
uation of the available capacity availability based on the
steady state distribution of the user position in the network.
Both the medium and the long term periods are discussed
in Section V-B. Section VI will then provide our resource
optimization algorithm.

A. Short term forecast with filters

This section addresses the reliability time τp achievable by
filtering techniques applied to available capacity time series. In
particular, we study autoregressive-moving average (ARMA)
filters and their setup according to the system dynamics defined
by the slot time t and the user speed v. We opted for ARMA
instead of GARCH [12], since capacity elements belonging
to the short term period are characterized by the same finitte
variance.

For each (t ∈ [0.5, 5], v ∈ [0.5, 5]) tuple we consider a set
of 100 capacity traces computed using Eqns. (1,2) as per [17]
starting from the mobility paths of a user moving at constant
speed in a random network deployment. We apply the Box-
Jenkins [18] method to determine the type and the order of
the filter to be used with each sequence. Through the analysis
of autocorrelation and partial autocorrelation plots, we find
that the best technique for our sequences consists of simple
autoregressive (AR) filters of order τF , and that τF is inversely
proportional to the tv product.

Subsequently, for each of the sequences we estimate filter
coefficients by means of the linear least squares procedure [19]
and we use the obtained filter to forecast the values of the
other sequences with the same (t, v) parameters. We refer to
a forecast sequence as C̃ = {c̃i ∈ [0, Cmax], i ∈ N}, obtained
from C and to the corresponding error ∆ = {δi = c̃i − ci ∈
[−Cmax, Cmax], i ∈ N}.

We consider a prediction to be reliable as long as the error
∆ is statistically smaller than estimating the capacity from
its distribution fC(c) or, in other words, when the standard
deviations of the two processes are equal σ∆ = σC .

Thus, we compute µ∆ and σ∆ as the average and the
standard deviation of all the error sequences with the same
(t, v) parameters. Fig. 1 shows on the abscissa the prediction

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

Normalized forecast time i/(vt)

N
o
rm

a
li
ze
d
er
ro
r
σ
∆
/
σ
C

τpτp,min τp,max

Fig. 1. The shaded area represents how the standard deviation of the short
term prediction error increase with increasing prediction distance varying the
user speed v and the slot time t. τp represents the time after which σ∆ ≥ σC .

time index normalized on t and on the ordinate σ∆/σC the
standard deviation of the prediction normalized on the standard
deviation σC of the original series C.

While the actual steepness of the curves varies with the
parameters, for all of them the normalized error standard
deviation σ∆/σC approaches 1 almost linearly. Hence, we set
τp = argminis.t.σ∆i

/σC > 1. In addition, we observe that
both τp and the filter order can be approximated with simple
linear models with the inverse of the tv product and that τp is
usually 10 times as large as the order of the AR filter.

Finally, it is sufficient to tune a set filters for varying t and v
and select the one to use according to the actual user mobility.
Also, since filters can be normalized on σC it is not needed
to have different filters for different numbers of active users
in the cell, but it is sufficient to rescale the constant and the
variance parameters of the filter.

B. Statistical models and uncertainties

This section describes the second technique of our general
forecast model, which adopts statistical models to describe the
user capacity availability for medium and long term prediction.
In particular, in order to describe the distribution of per user
capacity we started again from the model proposed in [17],
since to the best of our knowledge it is the only one which
takes into account the scheduler impact and thus is able to
model user contentions.

In order to account for the impact of uncertainties on the
user position and/or the number of active users in the cell
we need to modify the expression of the capacity distribution
fC(x) obtained for a specific position pi and number of users
ni to the actual distribution of the user position fP (x) and
the probability mass function fN (n) of the number of active
users in the cell. This can be achieved through the following
equation:

5

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput, x [Mbps]

C
D
F
,F

C
(x
)

No error
N error
P error
Mixed cell

Fig. 2. A few examples of the impact of imperfect knowledge on the capacity
distribution: the solid line is obtained with accurate information; the dotted and
the dashed with imprecision on N and P respectively, while the dash-dotted
considers two cells with different N .

fC(x) =
∑

i∈N

fN (i)

∫ ∞

0

fF,P |i(g
−1
C (x, p), p|i)

∣

∣

∣

∣

∂g−1
C (x, p)

∂x

∣

∣

∣

∣

dp,

(7)
where fF,P is the joint distribution of fading and position,
gC is the function linking the per user capacity to p and
n and N is the support of fN (n). Since fading and user
position are statistically independent their joint distribution
fF,P (x, y) = fF (x)fP (y) is the product of their distributions.
Eq. (7) modifies the original capacity distribution weighting
it through the active user probability mass function fN (i)
and the user position probability fP (y); the partial derivative
normalizes the integrand.

For what concerns our analysis, it is sufficient to be able to
compute the per user capacity distribution by accounting for
limited knowledge of the user position and traffic in the cell
by means of their respective distributions.

So far, our model describes capacity only for the case when
the cell the user is connected to is known perfectly. However,
to account for different cells it is sufficient to consider the
weighted sum of the capacity distributions of single cells
fC,i(x) is the capacity distribution related to cell i and ρi
is the probability of visiting cell i in the next time period, we
obtain:

fC(x) =
∑

i∈C

ρifC,i(x), (8)

where C is the set of cells that can be visited in the next time
period with some probability.

Fig. 2 provides a few examples of the CDF obtained using
the model. The solid line is representative of the capacity CDF
FC(x) when both the active user number n = 5 and the
user position p = 500 meters are exactly known so that the
distribution is equal to the fading distribution. The dotted line
accounts for an error on the number of active users in the cell
so that fN (x) = {0.2, 0.6, 0.2} for x = {4, 5, 6} respectively.
Conversely the dashed line is obtained by accounting for an
error on the user position which has a normal distribution with
parameters µP = 500 meters and σP = 100 meters. Finally,
the dash-dotted line is obtained by mixing together two cells

with 5 and 10 users with 20 and 80% of visiting probability
respectively. The piecewise-constant shape of the curves is due
to discrete relationship between SINR and bitrates.

In a practical implementation of this solution, the capacity
statistical models should be known in advance, while the user
position statistic fP (x) and the cell traversal time τ (i) will be
obtained by analyzing user mobility patterns; the number of
active users statistic fN(y) in the cell will be estimated from
historic information about that cell at that time of the day.

Finally, to define the statistical model for the long term
period, we consider a capacity distribution obtained as a
mixture of all the capacity distributions of cells in the network
weighted through their steady state visiting probability.

VI. RESOURCE ALLOCATION OPTIMIZATION UNDER

UNCERTAINTIES

The objective of this section is leveraging the concepts of
the previous ones to design a network resource allocation
algorithm which takes into account imperfect forecast and
that we called Imperfect Capacity prediction-Aware Resource
Optimization (ICARO). ICARO aims at minimizing the com-
munication cost while avoiding buffer under-runs. In particular,
we exploit the water-filling algorithm of Section IV in an
iterative way. At each iteration, Algorithm 1 makes a single
decisions about which rate r to use by exploiting both the AR
predictor described in Section V-A and the statistical models
designed in Section V-B.

Using an iterative algorithm allows to ensures that the
optimization algorithm is only making decision about actual
capacity values, but taking into account the future evolution of
the sequence.

Before describing the new algorithm, we first have to com-
bine the aforementioned tools into a single general capacity
prediction which can be used with Algorithm 1. In order to
account for the three time periods described in Section V we
proceed as follows (see Fig. 3):

1) The short term prediction c̃
(F)
i with i ∈ [0, τp] is obtained

from the past capacity information collected, for example, by
means of lightweight measurements [20] and choosing the
filter order τF and coefficients based on the user speed v.

2) The medium term model fC,i(x) is computed as the
superposition of the cells j ∈ C that the user is likely to visit
in the i-th time period, each of them accounted for according
to their user position fP,j(y) [16] and active user number
fN,j(z) [3], [21] statistics by Eq. (8). Similarly, the duration
of the i-th time period τi − τi−1, is obtained as a weighted
sum of cells traversal time τ (j) related to cell j ∈ (C).

3) During the i-th time period Di =
∑τi

j=τi−1
dj bytes has

to be downloaded to avoid buffer under-run. The maximum
cell efficiency is achieved when only the slots with the highest
capacity are used.

4) The highest threshold cT,i is computed so that the average
amount of data obtained by selecting only the slots with larger
a capacity than cT is larger than Di/(τi − τi−1):

cT,i = max
y

s.t.

∫ ∞

y

xfC,i(x)dx ≥ Di/(τi − τi−1). (9)

6

20 40 60 80 100 120

P
o
si
ti
o
n
,
P

Time, i

20 40 60 80 100 120

C
a
p
a
ci
ty
,
C

Cell A Cell B

Cell C

C̃
(F)
i C̃

(M,1)
i C̃

(M,2)
i

τp τ1 τ2

Fig. 3. The upper part of the figure illustrates a sequence obtained through
our mixed predictor: autoregressive filtering until τp , statistical model until
τ2. The lower part shows a possible example of the user movement, where
the horizontal arrow is the user direction and the shaded area contains the set
of positions where the user can be predicted to be.

5) The i-th time period is modeled as a sequence of τi−τi−1

values

c̃
(M,i)
j =

{

cT,i j > (1 − FC,i(cT,i))(τi − τi−1)

0 otherwise
, (10)

where FC,i(cT,i) is the probability of the capacity being lower
than cT,i, thus (1−FC,i(cT,i))(τi−τi−1) is the average number
of slots with larger capacity than the threshold.

6) Steps 2 to 5 are repeated and new time periods are added
in the sequence if their reliability is sufficient (two cells, if
Markovian predictors are used [15]).

7) Compute τo as the offset time when the user first entered
in the cell.

8) Obtain the predicted capacity sequence as the concatena-
tion of the previously computed time period sequences:

c̃i =

c0 i = 0

c̃
(F)
i 0 < i ≤ τp

c̃
(M,1)
i τp < i ≤ τ1 ∧ τ1 > τp + τo

c̃
(M,2)
i max(τo + τp, τ1) < i ≤ τ2
· · ·

c̃
(M,n)
i τn−1 < i ≤ τn

, (11)

where τn is the duration of the whole sequence, c0 is the

known present capacity, c̃
(M,1)
i is modified by removing slots

from the beginning (c̃
(M,1)
i = 0) if the past capacity values

and those predicted with c̃
(F)
i are lower than cT,1 or from the

end (c̃
(M,1)
i = cT,1) if the opposite is true.

Fig. 3 shows an example of a mixed model sequence:
in the upper part, the thin solid line represents the ground
truth available capacity C, the thick solid line is the short
term prediction C̃(F) and the dashed line represents two

cells through their statistics by means of C̃(M,1) and C̃(M,2)

respectively. The lower part of the figure represents a map
where the user is moving from the left to the right following
the central horizontal solid line. The shaded area highlights the
area where the user is likely to be The dashed circles represent
the coverage areas of different cells. Finally, dash-dotted lines
crossing the two parts of the figures mark τp, τ1 and τ2 instants.

ICARO, which is detailed in the following Algorithm 2, uses
the water-filling algorithm to allocate rate iteratively based on
the mixed forecast sequence of Eq. (11). The algorithm ends
if the total remaining required bytes is smaller or equal than
the current buffer level.

Algorithm 2 Imperfect Capacity prediction-Aware Resource
Optimization (ICARO)

Input: the future download requirement D, user speed v and
position p, τF past values of the capacity sampled with
t period, the capacity statistics fC,i(x) and time period
traversal time τi for the next predictable time periods.

Output: R,O,U
s = 0 // set the starting point
bs = B0 // set the starting buffer
rs = 0, R = ∅ // set the starting allocation

while
∑|D|

i=s di ≥ bs do

compute C̃ as per Eq. (11)
run R̂ = WF(C̃,D, bs)
rs = min(r̂1, cs, BM − bs) // rate to be used
if cs then
os = rs/cs // cost

else
os = 0

end if
if ds > 0 then
us = max((ds − bs + rs), 0)/ds // buffer under-run

else
us = 0

end if
bs+1 = min(max(bs + rs − ds, 0), BM) // next buffer
if us > 0 then
D = shift(D, us, s)

end if
s = s+ 1
D = {di, s < i ≤ |D|} // remove the first element from
the requirements sequence

end while
return R,O,U

The rationale for using the water-filling algorithm on the
mixed forecast sequence is that its operational principle, that
selects which slot to use in descending order, still works under
uncertainties and provides a solution which is conservative (as
the highest capacity slots are placed last) to avoid under-runs,
and aggressive (as the allocation priority is given to the most
reliable slots) to optimize allocation costs. In the following,
we provide a few examples of the algorithm:

Ordering the short term forecast: the elements of the short
term prediction sequence can be assumed to have the same

7

50 100 150 200 250 300 350 400

IC
A
R
O
,
R

50 100 150 200 250 300 350 400

O
P
T
,
R

50 100 150 200 250 300 350 400

F
U
L
L
,
R

Time, i

50 100 150 200 250 300 350 400

B
u
ff
er
,
b i

OPT
ICARO
FULL

50 100 150 200 250 300 350

Time, i

T
o
ta
l
co

st
,
∑

i
o i

OPT
ICARO
FULL

BM

Fig. 4. ICARO algorithm output is compared to the optimal allocation (OPT) and the most conservative approach (FULL) on the left. On the right the differences
between the buffer state and the cost evolutions of the three algorithms.

order of those of the actual sequence. In fact, as we showed in

Section V-A, σδ,i is increasing with i, thus if c̃
(F)
i > c̃

(F)
j and

j > i, then the same ordering probability is larger than that of
opposite order (P[ci > cj] > P[ci ≤ cj]). Thus, the water-
filling algorithm can be used on the short term prediction,
because its order is likely to match that of the actual sequence.

Ordering between short and medium term forecast: the
i-th medium term period is represented as a sequence of
(τi − τi−1)FC,i(cT,i) zero capacity slots while the remaining
slots are equal to cT,i. Hence, if the short term prediction is
lower than cT,1 only the minimum rate is used, since from
the statistical model slots of higher capacity are expected to
come later. Conversely, if the short term prediction is larger
than cT,1, then it is more likely that the remaining slots will be
lower than the threshold (compare with step 8 of the sequence
creation).

Buffering: the algorithm will always try to use the slots
above threshold in each time periods and bridge those by using
the buffer. By positioning the slots with highest capacity at
the end of each time periods we ensure that the algorithm is
conservative. Finally, the maximum buffer size BM limits the
optimization horizon of the algorithm: in fact, the maximum
time that the system can last without using any capacity
is given by BM/(

∑

i di/|D|). Hence, the buffer size has a
significant impact on the algorithm performance which we
analyze in the next section.

Fig. 4 shows an example of ICARO’s performance compared
to the optimal boundary (OPT) obtained with perfect forecast
and to the trivial (FULL) solution which maintains the buffer
as full as possible. Fig. 4(a) shows three plots of the used
rate R of the three algorithm: ICARO in the topmost part, the
OPT in the center and FULL at the bottom. In all three plots
the shaded area represents the used part of the total available
capacity which is drawn as a solid line.

The main difference among the three solutions is that FULL

continues to fill the buffer during the low quality period at
about i = 25, while OPT just use the needed quantity to be
able to harness the best part of the second cell (i = 50), while
ICARO, being more conservative than the optimal solution,
accumulates more in the beginning and needs to make some
suboptimal decisions (i.e.: i = 80). In the rest of the trace,
FULL continues downloading just the needed to maintain the
buffer full, OPT is able to use the best slots only, while ICARO
performs very close to OPT.

Similar considerations can be derived from Fig. 4(a): the
upper part shows the buffer variation for the three schemes,
while the lower part reports the cumulative cost. We can
remark that ICARO performs very close to OPT, but it is
always slightly more conservative as the buffer is always a
bit fuller earlier on. Also, even though the cost is higher than
the optimal, the two algorithms perform quite the same.

VII. RESULTS

In this section we provide an analysis of the overall perfor-
mance of our algorithm. Since, to the best of our knowledge
no other solution is able to compute resource allocation while
accounting for the impact of prediction uncertainties, we com-
pare our solution with the optimum offline allocation (OPT)
computed with the optimal water-filling algorithm on the
exact capacity time series and the most conservative approach
(FULL) which just fills up the buffer as soon as possible and
maintains it as full as possible until the download requirements
are satisfied.

The main performance metrics we are interested in are the
objective function O and the buffer under-run time U . In order
to be able to mix the results of every tested configuration,
we adopt the average cost ξ =

∑

i oi/|O|, the average cost
saving η = (

∑

i oi,FULL−oi,ICARO)/
∑

i oi,FULL obtained by
our algorithm, and the average buffer under-run time increase
ζ =

∑

i ui,ICARO −
∑

i ui,OPT.

8

20 40 60 80 100 120 140 160 180 200
0.07
0.08
0.09
0.1

0.11

20 40 60 80 100 120 140 160 180 200

0.4

0.45

0.5

0.55

A
v
er
a
g
e
co

st
,
ξ

20 40 60 80 100 120 140 160 180 200

0.8

0.85

0.9

Normalized buffer size, BMC/D

ICARO OPT FULL

D/C = 0.1

D/C = 0.5

D/C = 0.9

50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.05

0.05
0.05 0.05

0.1

0.1

0.1

0.1

0.1

0.15

0.15

0.15

0.15

0.15

0.2

0.2

0.2

0.2

0.250.25

0.25

Normalized buffer size, BMC/D

N
o
rm

a
li
ze
d
re
q
u
ir
em

en
t,

D
/
C

Cost saving, η

50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001
0.001

0.001

Normalized buffer size, BMC/D

N
o
rm

a
li
ze
d
re
q
u
ir
em

en
t,

D
/
C

Under-run time increase, ζ

Optimal buffer under-run U

Fig. 5. Overall performance comparison among ICARO, OPT and FULL algorithms in the suburban scenario. ξ, η and ζ for different operational conditions
(BM

∑
i ci/

∑
i di and

∑
i di/

∑
i ci) are plotted on the left, center and right respectively.

We analyze two LTE network scenarios: a suburban envi-
ronment with users moving at moderate vehicular speed and
a pedestrian urban environment (µv = 5 and 1 meters per
second). Both scenarios have been simulated by generating
random networks of 100 adjacent cells with average distance
between base stations of 500 meters and 1.5 kilometers re-
spectively. Results obtained in the two scenarios are shown in
Fig. 5 and Fig. 6.

To generate capacity traces we use the Hata model [22] for
the path loss, the Rayleigh distribution for the fast fading and
we follow the analysis of proportional fair scheduling in [17]
to obtain the capacity distribution of a UE at a given distance
from the eNodeB, when there are N active users uniformly
distributed in the cell.

Each simulation group is defined by a network deployment
and a reference path which the user follows to cross the net-
work. The time it takes to traverse the path is 2000t/v seconds.
To train the system we study 50 other paths following random
trajectories within a cell coverage range from the reference
path. We use trajectory based predictors in suburban simulation
and Markovian estimators for the urban ones. Subsequently,
we validate the system on 25 other paths generated from the
same reference while using the information gathered from the
training set for the predictions.

For each tuple (v ∈ [0.5, 5], t ∈ [0.5, 5]) we generate
20 groups of simulations. Finally, during the validation we
vary the requirement over capacity ratio (

∑

i di/
∑

i ci) ∈
[0.1, 0.9], and the normalized buffer size (BM

∑

i ci/
∑

i di) ∈
[1, 200].

Fig. 5 (left) shows the average cost ξ of the three algo-
rithms (OPT, ICARO and FULL as solid, dashed and dash
dotted lines, respectively) varying the buffer size (x-axis) for
∑

i di/
∑

i ci = {0.1, 0.5, 0.9} (upper, center and lower plots).
In the upper plot the download requirements are moderate and
both OPT and ICARO are able to obtain a normalized cost
lower than 0.08 (corresponding to 80% of the

∑

i di/
∑

i ci),
while FULL needs 95% of the resource (ξ = 0.095). The
performance is coherent in the other plots and ICARO is
always better than FULL and close to OPT. As expected,
ICARO performance improves when the buffer is larger and
the requirements are lower. Notably, when the buffer is very

small the three algorithms perform the same. However, the per-
formance degradation for large buffer size has to be ascribed
to the simulation length: in fact, in order to fully exploit a
large buffer a proportionally longer time is needed.

The central figure shows contour plots of ICARO’s effi-
ciency η using BM

∑

i ci/
∑

i di as abscissa and
∑

i di/
∑

i ci
as ordinate: the curves are labeled according to the cost savings
achieved and the area is colored with a darker shade if the
saving is lower. Again the best results are obtained for medium
buffer and small requirements where ICARO is more than 25%
cheaper than FULL. On average, ICARO is 8% worse than
OPT.

The figure on the right shows how close is ICARO to
the optimal buffer under-run time obtained by both OPT and
FULL. We plot ζ using the same coordinates as those of
the previous figure. Here the white part of figure highlights
where ICARO is able to achieve optimal performance, while
other darker areas correspond to slightly worse performance.
Notably, for no parameters the buffer under-run time was larger
than 0.01t and very rarely larger than 0.001t, chiefly for high
requirement and small buffer size. Also, the 0.0001t contour
is noisy due to the system sensitivity to input parameters in
that particular region.

Fig. 6 provides results equivalent to those of the previous
set of figures, but obtained for the urban scenario. Here,
ICARO performance is slightly worse than those obtained in
the suburban scenario. This is due to two main reasons: first,
the urban environment shows a lower time correlation due to a
more scattered fast fading and, second, to the lower accuracy of
Markovian estimation compared to trajectory-based predictors.

Nonetheless, ICARO maintains, in the urban scenario, the
positive outcome obtained in the suburban: the buffer under-
run time (right) is most often optimal and, when it is not,
the increase never reaches 1% of the buffer under-run time
obtained by OPT; the cost savings (center) are mostly larger
than 10% and as good as 20% in a limited parameter region.

Since ICARO gives priority to avoiding buffer under-runs,
it can obtain higher cost savings when the ratio between
requirements and available capacity is lower. Thus, since ζ is
always lower than 1%, the algorithm is able to trade off cost
efficiency for robustness effectively and it is able to achieve up

9

20 40 60 80 100 120 140 160 180 200

0.08

0.1

0.12

20 40 60 80 100 120 140 160 180 200

0.4

0.45

0.5

0.55

A
v
er
a
g
e
co

st
,
ξ

20 40 60 80 100 120 140 160 180 200

0.8

0.85

0.9

Normalized buffer size, BMC/D

ICARO OPT FULL

D/C = 0.1

D/C = 0.5

D/C = 0.9

50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.05

0.05
0.05

0.05

0.1

0.1
0.1

0.1

0.1

0.1

0.15

0.15

0.15

0.15

0.15 0.15
0.15

Normalized buffer size, BMC/D

N
o
rm

a
li
ze
d
re
q
u
ir
em

en
t,

D
/
C

Cost saving, η

50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0001

0.0001

0.0001

0.0001

0.0001 0.0001

0.0001

0.0001

0.001

0.001

Normalized buffer size, BMC/D

N
o
rm

a
li
ze
d
re
q
u
ir
em

en
t,

D
/
C

Under-run time increase, ζ

Optimal buffer under-run U

Fig. 6. Overall performance comparison among ICARO, OPT and FULL algorithms in the urban scenario. ξ, η and ζ for different operational conditions
(BM

∑
i ci/

∑
i di and

∑
i di/

∑
i ci) are plotted on the left, center and right respectively.

to 25% cost reduction when the conditions are favorable, but
it is never too aggressive when the future capacity estimation
does not allow to do so.

Finally, when ICARO achieves the best results, the system
is able to sustain the same quality of service while saving
up 25% of the network resources or, analogously, 25% more
users can be served with the same capacity. Conversely, where
it obtains the worst performance, it is the system condition
itself that offers small improvement margins: in particular for
very small buffer sizes and/or high requirements.

VIII. CONCLUSION

In this paper we addressed the problem of resource opti-
mization for mobile networks under imperfect prediction of
future available capacity. To this aim we developed a general
prediction model that allowed us to account for different
prediction tools to encompass short to medium and long term
prediction. This joint estimation technique allowed us to design
ICARO, a lightweight resource optimization algorithm which
achieves close-to-optimal performance. It achieves a nearly
optimal buffer under-run time, which never exceeds the optimal
time by more than 1%. In addition, ICARO is effective in the
robustness/efficiency trade off. When the system conditions
permit, it saves up to 25% of the network resources.

As a final remark, ICARO is the first practical resource
optimization algorithm that does not assume perfect knowl-
edge of the future system evolution and thus demonstrate the
feasibility of prediction-enhanced optimization techniques for
mobile networks.

ACKNOWLEDGMENT

The research leading to these results was partly funded by
the European Union under the project eCOUSIN (EU-FP7-
318398).

REFERENCES

[1] T. Chiang, “What’s expected of us,” Nature, vol. 436, no. 7047, pp.
150–150, 2005.

[2] S. Wang, Y. Xin, S. Chen, W. Zhang, and C. Wang, “Enhancing
spectral efficiency for LTE-advanced and beyond cellular networks
[Guest Editorial],” IEEE Wireless Communications, vol. 21, no. 2, pp.
8–9, April 2014.

[3] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das,
“Understanding traffic dynamics in cellular data networks,” in IEEE
INFOCOM, Shangai, China, April 2011, pp. 882–890.

[4] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and model-
ing internet traffic dynamics of cellular devices,” in ACM SIGMETRICS,
New York, NY, USA, 2011, pp. 305–316.

[5] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” Nature, vol. 453, no. 7196, pp.
779–782, 2008.

[6] Z. Lu and G. de Veciana, “Optimizing stored video delivery for mobile
networks: The value of knowing the future,” in IEEE INFOCOM, Turin,
Italy, April 2013, pp. 2706–2714.

[7] H. Abou-zeid, H. Hassanein, and S. Valentin, “Energy-efficient adaptive
video transmission: Exploiting rate predictions in wireless networks,”
IEEE Transactions on Vehicular Technology, vol. 63, no. 5, pp. 2013–
2026, June 2014.

[8] J. Rasool and G. Oien, “Maximizing the throughput guarantees in wire-
less networks under imperfect channel knowledge,” in IEEE WCNC,
Paris, France, April 2012, pp. 2225–2229.

[9] K. Akkarajitsakul, E. Hossain, and D. Niyato, “Distributed resource
allocation in wireless networks under uncertainty and application of
bayesian game,” IEEE Communications Magazine, vol. 49, no. 8, pp.
120–127, 2011.

[10] F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lilius, “Prediction-
based dynamic resource allocation for video transcoding in cloud
computing,” in IEEE PDP, Belfast, Ireland, February 2013, pp. 254–
261.

[11] M. Ahmed, S. Spagna, F. Huici, and S. Niccolini, “A peek into the
future: predicting the evolution of popularity in user generated content,”
in ACM WSDM, Rome, Italy, February 2013, pp. 607–616.

[12] N. Sadek and A. Khotanzad, “Multi-scale high-speed network traffic
prediction using k-factor gegenbauer arma model,” in IEEE ICC, vol. 4,
Paris, France, June 2004, pp. 2148–2152.

[13] Y. Qiao, J. Skicewicz, and P. Dinda, “An empirical study of the
multiscale predictability of network traffic,” in IEEE HDPC, Honolulu,
Hawaii USA, June 2004, pp. 66–76.

[14] N. Bui, F. Michelinakis, and J. Widmer, “A model for throughput
prediction for mobile users,” in European Wireless, Barcelona, Spain,
May 2014.

[15] A. J. Nicholson and B. D. Noble, “Breadcrumbs: forecasting mobile
connectivity,” in ACM MobiCom, San Francisco, CA, USA, September
2008, pp. 46–57.

10

[16] J. Froehlich and J. Krumm, “Route prediction from trip observations,”
SAE SP, vol. 2193, p. 53, 2008.

[17] O. Østerbø, “Scheduling and capacity estimation in lte,” in IEEE ITC,
San Francisco, CA, USA, September 2011, pp. 63–70.

[18] S. Makridakis and M. Hibon, “ARMA Models and the Box-Jenkins
Methodology,” Journal of Forecasting, vol. 16, no. 3, pp. 147–163,
1997.

[19] J. D. Hamilton, Time series analysis. Princeton university press
Princeton, 1994, vol. 2.

[20] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet-dispersion tech-

niques and a capacity-estimation methodology,” IEEE/ACM Transac-

tions on Networking, vol. 12, no. 6, pp. 963–977, December 2004.

[21] A. Burulitisz, S. Imre, and S. Szabó, “On the accuracy of mobility
modelling in wireless networks,” in IEEE ICC, vol. 4, Paris, France,
June 2004, pp. 2302–2306.

[22] M. Hata, “Empirical formula for propagation loss in land mobile radio
services,” IEEE Transactions on Vehicular Technology, vol. 29, no. 3,
pp. 317–325, 1980.

